Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386778907> ?p ?o ?g. }
- W4386778907 endingPage "3908" @default.
- W4386778907 startingPage "3908" @default.
- W4386778907 abstract "Knowledge graphs (KGs) have gained prominence for representing real-world facts, with queries of KGs being crucial for their application. Aggregate queries, as one of the most important parts of KG queries (e.g., “ What is the average price of cars produced in Germany?”), can provide users with valuable statistical insights. An efficient solution for KG aggregate queries is approximate aggregate queries with semantic-aware sampling (AQS). This balances the query time and result accuracy by estimating an approximate aggregate result based on random samples collected from a KG, ensuring that the relative error of the approximate aggregate result is bounded by a predefined error. However, AQS is tailored for simple aggregate queries and exhibits varying performance for complex aggregate queries. This is because a complex aggregate query usually consists of multiple simple aggregate queries, and each sub-query influences the overall processing time and result quality. Setting a large error bound for each sub-query yields quick results but with a lower quality, while aiming for high-quality results demands a smaller predefined error bound for each sub-query, leading to a longer processing time. Hence, devising efficient and effective methods for executing complex aggregate queries has emerged as a significant research challenge within contemporary KG querying. To tackle this challenge, we first introduced an execution cost model tailored for original AQS (i.e., supporting simple queries) and founded on Taylor’s theorem. This model aids in identifying the initial parameters that play a pivotal role in the efficiency and efficacy of AQS. Subsequently, we conducted an in-depth exploration of the intrinsic relationship of the error bounds between a complex aggregate query and its constituent simple queries (i.e., sub-queries), and then we formalized an execution cost model for complex aggregate queries, given the accuracy constraints on the error bounds of all sub-queries. Harnessing the multi-objective optimization genetic algorithm, we refined the error bounds of all sub-queries with moderate values, to achieve a balance of query time and result accuracy for the complex aggregate query. An extensive experimental study on real-world datasets demonstrated our solution’s superiority in effectiveness and efficiency." @default.
- W4386778907 created "2023-09-16" @default.
- W4386778907 creator A5003999469 @default.
- W4386778907 creator A5058662379 @default.
- W4386778907 creator A5063412515 @default.
- W4386778907 creator A5077453919 @default.
- W4386778907 date "2023-09-14" @default.
- W4386778907 modified "2023-09-26" @default.
- W4386778907 title "Efficient Complex Aggregate Queries with Accuracy Guarantee Based on Execution Cost Model over Knowledge Graphs" @default.
- W4386778907 cites W1552847225 @default.
- W4386778907 cites W1976597724 @default.
- W4386778907 cites W1991969632 @default.
- W4386778907 cites W2011992920 @default.
- W4386778907 cites W2018030107 @default.
- W4386778907 cites W2020657191 @default.
- W4386778907 cites W2035801804 @default.
- W4386778907 cites W2044461694 @default.
- W4386778907 cites W2055898276 @default.
- W4386778907 cites W2056524360 @default.
- W4386778907 cites W2065788533 @default.
- W4386778907 cites W2066293100 @default.
- W4386778907 cites W2082906874 @default.
- W4386778907 cites W2094728533 @default.
- W4386778907 cites W2121041488 @default.
- W4386778907 cites W2122865749 @default.
- W4386778907 cites W2132808937 @default.
- W4386778907 cites W2151149636 @default.
- W4386778907 cites W2188272488 @default.
- W4386778907 cites W2296157284 @default.
- W4386778907 cites W2296677182 @default.
- W4386778907 cites W2343594956 @default.
- W4386778907 cites W2421547754 @default.
- W4386778907 cites W2427321582 @default.
- W4386778907 cites W2436406362 @default.
- W4386778907 cites W2522757338 @default.
- W4386778907 cites W2765311216 @default.
- W4386778907 cites W2908230750 @default.
- W4386778907 cites W2949053898 @default.
- W4386778907 cites W2951479072 @default.
- W4386778907 cites W3005218912 @default.
- W4386778907 cites W3030759655 @default.
- W4386778907 cites W3032267721 @default.
- W4386778907 cites W3046148182 @default.
- W4386778907 cites W3100965700 @default.
- W4386778907 cites W4226024156 @default.
- W4386778907 cites W4229903866 @default.
- W4386778907 cites W4235178178 @default.
- W4386778907 cites W4250212406 @default.
- W4386778907 doi "https://doi.org/10.3390/math11183908" @default.
- W4386778907 hasPublicationYear "2023" @default.
- W4386778907 type Work @default.
- W4386778907 citedByCount "0" @default.
- W4386778907 crossrefType "journal-article" @default.
- W4386778907 hasAuthorship W4386778907A5003999469 @default.
- W4386778907 hasAuthorship W4386778907A5058662379 @default.
- W4386778907 hasAuthorship W4386778907A5063412515 @default.
- W4386778907 hasAuthorship W4386778907A5077453919 @default.
- W4386778907 hasBestOaLocation W43867789071 @default.
- W4386778907 hasConcept C111472728 @default.
- W4386778907 hasConcept C124101348 @default.
- W4386778907 hasConcept C134306372 @default.
- W4386778907 hasConcept C138885662 @default.
- W4386778907 hasConcept C157692150 @default.
- W4386778907 hasConcept C159985019 @default.
- W4386778907 hasConcept C164120249 @default.
- W4386778907 hasConcept C192562407 @default.
- W4386778907 hasConcept C192939062 @default.
- W4386778907 hasConcept C23123220 @default.
- W4386778907 hasConcept C24028149 @default.
- W4386778907 hasConcept C2779530757 @default.
- W4386778907 hasConcept C2780586882 @default.
- W4386778907 hasConcept C33923547 @default.
- W4386778907 hasConcept C34388435 @default.
- W4386778907 hasConcept C41008148 @default.
- W4386778907 hasConcept C4679612 @default.
- W4386778907 hasConcept C77553402 @default.
- W4386778907 hasConcept C97854310 @default.
- W4386778907 hasConceptScore W4386778907C111472728 @default.
- W4386778907 hasConceptScore W4386778907C124101348 @default.
- W4386778907 hasConceptScore W4386778907C134306372 @default.
- W4386778907 hasConceptScore W4386778907C138885662 @default.
- W4386778907 hasConceptScore W4386778907C157692150 @default.
- W4386778907 hasConceptScore W4386778907C159985019 @default.
- W4386778907 hasConceptScore W4386778907C164120249 @default.
- W4386778907 hasConceptScore W4386778907C192562407 @default.
- W4386778907 hasConceptScore W4386778907C192939062 @default.
- W4386778907 hasConceptScore W4386778907C23123220 @default.
- W4386778907 hasConceptScore W4386778907C24028149 @default.
- W4386778907 hasConceptScore W4386778907C2779530757 @default.
- W4386778907 hasConceptScore W4386778907C2780586882 @default.
- W4386778907 hasConceptScore W4386778907C33923547 @default.
- W4386778907 hasConceptScore W4386778907C34388435 @default.
- W4386778907 hasConceptScore W4386778907C41008148 @default.
- W4386778907 hasConceptScore W4386778907C4679612 @default.
- W4386778907 hasConceptScore W4386778907C77553402 @default.
- W4386778907 hasConceptScore W4386778907C97854310 @default.
- W4386778907 hasIssue "18" @default.
- W4386778907 hasLocation W43867789071 @default.