Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386780711> ?p ?o ?g. }
- W4386780711 endingPage "4520" @default.
- W4386780711 startingPage "4520" @default.
- W4386780711 abstract "As a crucial computer vision task, multi-objective semantic segmentation has attracted widespread attention and research in the field of remote sensing image analysis. This technology has important application value in fields such as land resource surveys, global change monitoring, urban planning, and environmental monitoring. However, multi-target semantic segmentation of remote sensing images faces challenges such as complex surface features, complex spectral features, and a wide spatial range, resulting in differences in spatial and spectral dimensions among target features. To fully exploit and utilize spectral feature information, focusing on the information contained in spatial and spectral dimensions of multi-spectral images, and integrating external information, this paper constructs the CD-MQANet network structure, where C represents the Channel Creator module and D represents the Dual-Path Encoder. The Channel Creator module (CCM) mainly includes two parts: a generator block and a spectral attention module. The generator block aims to generate spectral channels that can expand different ground target types, while the spectral attention module can enhance useful spectral information. Dual-Path Encoders include channel encoders and spatial encoders, intended to fully utilize spectrally enhanced images while maintaining the spatial information of the original feature map. The decoder of CD-MQANet is a multitasking decoder composed of four types of attention, enhancing decoding capabilities. The loss function used in the CD-MQANet consists of three parts, which are generated by the intermediate results of the CCM, the intermediate results of the decoder, and the final segmentation results and label calculation. We performed experiments on the Potsdam dataset and the Vaihingen dataset. Compared to the baseline MQANet model, the CD-MQANet network improved mean F1 and OA by 2.03% and 2.49%, respectively, on the Potsdam dataset, and improved mean F1 and OA by 1.42% and 1.25%, respectively, on the Vaihingen dataset. The effectiveness of CD-MQANet was also proven by comparative experiments with other studies. We also conducted a thermographic analysis of the attention mechanism used in CD-MQANet and analyzed the intermediate results generated by CCM and LAM. Both modules generated intermediate results that had a significant positive impact on segmentation." @default.
- W4386780711 created "2023-09-16" @default.
- W4386780711 creator A5001707497 @default.
- W4386780711 creator A5007019142 @default.
- W4386780711 creator A5026667079 @default.
- W4386780711 creator A5035339024 @default.
- W4386780711 creator A5036523510 @default.
- W4386780711 creator A5039758605 @default.
- W4386780711 creator A5042789186 @default.
- W4386780711 creator A5042857054 @default.
- W4386780711 creator A5066829203 @default.
- W4386780711 creator A5076542236 @default.
- W4386780711 date "2023-09-14" @default.
- W4386780711 modified "2023-10-18" @default.
- W4386780711 title "CD-MQANet: Enhancing Multi-Objective Semantic Segmentation of Remote Sensing Images through Channel Creation and Dual-Path Encoding" @default.
- W4386780711 cites W2055025919 @default.
- W4386780711 cites W2412782625 @default.
- W4386780711 cites W2577238056 @default.
- W4386780711 cites W2752782242 @default.
- W4386780711 cites W2893801697 @default.
- W4386780711 cites W2895340641 @default.
- W4386780711 cites W2955058313 @default.
- W4386780711 cites W2963881378 @default.
- W4386780711 cites W2964309882 @default.
- W4386780711 cites W2977002487 @default.
- W4386780711 cites W2997601829 @default.
- W4386780711 cites W3043181422 @default.
- W4386780711 cites W3045657924 @default.
- W4386780711 cites W3128592650 @default.
- W4386780711 cites W3130652158 @default.
- W4386780711 cites W3165336848 @default.
- W4386780711 cites W3198314649 @default.
- W4386780711 cites W3206685025 @default.
- W4386780711 cites W3213555053 @default.
- W4386780711 cites W3217364745 @default.
- W4386780711 cites W4206303357 @default.
- W4386780711 cites W4220943253 @default.
- W4386780711 cites W4241881238 @default.
- W4386780711 cites W4248710273 @default.
- W4386780711 cites W4290998965 @default.
- W4386780711 cites W4308720495 @default.
- W4386780711 cites W4311154141 @default.
- W4386780711 cites W4311529415 @default.
- W4386780711 cites W4313134080 @default.
- W4386780711 cites W4319663796 @default.
- W4386780711 cites W4321600311 @default.
- W4386780711 doi "https://doi.org/10.3390/rs15184520" @default.
- W4386780711 hasPublicationYear "2023" @default.
- W4386780711 type Work @default.
- W4386780711 citedByCount "0" @default.
- W4386780711 crossrefType "journal-article" @default.
- W4386780711 hasAuthorship W4386780711A5001707497 @default.
- W4386780711 hasAuthorship W4386780711A5007019142 @default.
- W4386780711 hasAuthorship W4386780711A5026667079 @default.
- W4386780711 hasAuthorship W4386780711A5035339024 @default.
- W4386780711 hasAuthorship W4386780711A5036523510 @default.
- W4386780711 hasAuthorship W4386780711A5039758605 @default.
- W4386780711 hasAuthorship W4386780711A5042789186 @default.
- W4386780711 hasAuthorship W4386780711A5042857054 @default.
- W4386780711 hasAuthorship W4386780711A5066829203 @default.
- W4386780711 hasAuthorship W4386780711A5076542236 @default.
- W4386780711 hasBestOaLocation W43867807111 @default.
- W4386780711 hasConcept C111919701 @default.
- W4386780711 hasConcept C118505674 @default.
- W4386780711 hasConcept C125411270 @default.
- W4386780711 hasConcept C127162648 @default.
- W4386780711 hasConcept C127313418 @default.
- W4386780711 hasConcept C138885662 @default.
- W4386780711 hasConcept C154945302 @default.
- W4386780711 hasConcept C199360897 @default.
- W4386780711 hasConcept C2524010 @default.
- W4386780711 hasConcept C2776401178 @default.
- W4386780711 hasConcept C2777210771 @default.
- W4386780711 hasConcept C2777735758 @default.
- W4386780711 hasConcept C31972630 @default.
- W4386780711 hasConcept C33923547 @default.
- W4386780711 hasConcept C41008148 @default.
- W4386780711 hasConcept C41895202 @default.
- W4386780711 hasConcept C57273362 @default.
- W4386780711 hasConcept C62649853 @default.
- W4386780711 hasConcept C76155785 @default.
- W4386780711 hasConcept C89600930 @default.
- W4386780711 hasConceptScore W4386780711C111919701 @default.
- W4386780711 hasConceptScore W4386780711C118505674 @default.
- W4386780711 hasConceptScore W4386780711C125411270 @default.
- W4386780711 hasConceptScore W4386780711C127162648 @default.
- W4386780711 hasConceptScore W4386780711C127313418 @default.
- W4386780711 hasConceptScore W4386780711C138885662 @default.
- W4386780711 hasConceptScore W4386780711C154945302 @default.
- W4386780711 hasConceptScore W4386780711C199360897 @default.
- W4386780711 hasConceptScore W4386780711C2524010 @default.
- W4386780711 hasConceptScore W4386780711C2776401178 @default.
- W4386780711 hasConceptScore W4386780711C2777210771 @default.
- W4386780711 hasConceptScore W4386780711C2777735758 @default.
- W4386780711 hasConceptScore W4386780711C31972630 @default.
- W4386780711 hasConceptScore W4386780711C33923547 @default.
- W4386780711 hasConceptScore W4386780711C41008148 @default.
- W4386780711 hasConceptScore W4386780711C41895202 @default.