Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386781606> ?p ?o ?g. }
- W4386781606 endingPage "102163" @default.
- W4386781606 startingPage "102163" @default.
- W4386781606 abstract "Government inspection reports detail unsafe acts and conditions that arise on construction sites, especially front-line managers’ non-compliance practices, which are hardly identified during self-inspections. Such information serves as a valuable learning source for better construction management. However, non-compliance issue records in inspection reports are typically stored in unstructured text formats, making data analysis challenging. In response, an intelligent text mining framework integrating graph analysis and visualization is presented. The proposed framework comprises data collection and preprocessing and three levels of text analysis: word, sentence, and document. The main tasks of the word-level analysis include (1) extracting keywords using KeyBERT and (2) identifying non-compliance issue types based on community detection in a keyword co-occurrence graph. The sentence-level analysis is performed to automatically classify text data from inspection reports by determining the degree of similarity between texts and communities and assigning the most similar community to each text. The document-level analysis aims to identify the interrelations between various non-compliance issues through association rule mining and a community interaction network. The framework is validated by a total of 6,153 text data featuring non-compliance issues from 322 government on-site inspection reports in Shanghai, China. The results demonstrate that the critical word-level features of non-compliance issues can be accurately identified using KeyBert, which outperforms other state-of-the-art methods. Our approach can also automate the development of a data-driven taxonomy for non-compliance issues and the classification of the corresponding records, requiring less manual intervention than conventional text classification models." @default.
- W4386781606 created "2023-09-16" @default.
- W4386781606 creator A5017257163 @default.
- W4386781606 creator A5028441166 @default.
- W4386781606 creator A5065704197 @default.
- W4386781606 creator A5070975639 @default.
- W4386781606 date "2023-10-01" @default.
- W4386781606 modified "2023-09-27" @default.
- W4386781606 title "Intelligent information extraction from government on-site inspection reports of construction projects: A graph-based text mining approach" @default.
- W4386781606 cites W1970913835 @default.
- W4386781606 cites W1979843082 @default.
- W4386781606 cites W1989894105 @default.
- W4386781606 cites W2039400735 @default.
- W4386781606 cites W2056944867 @default.
- W4386781606 cites W2067481911 @default.
- W4386781606 cites W2098168775 @default.
- W4386781606 cites W2125435464 @default.
- W4386781606 cites W2127048411 @default.
- W4386781606 cites W2131681506 @default.
- W4386781606 cites W2142263282 @default.
- W4386781606 cites W2159121491 @default.
- W4386781606 cites W2166559705 @default.
- W4386781606 cites W2507333996 @default.
- W4386781606 cites W2521645674 @default.
- W4386781606 cites W2529494366 @default.
- W4386781606 cites W2538658056 @default.
- W4386781606 cites W2744095960 @default.
- W4386781606 cites W2793868694 @default.
- W4386781606 cites W2806482501 @default.
- W4386781606 cites W2810037323 @default.
- W4386781606 cites W2912008996 @default.
- W4386781606 cites W2912368565 @default.
- W4386781606 cites W2964656262 @default.
- W4386781606 cites W2970641574 @default.
- W4386781606 cites W2997159780 @default.
- W4386781606 cites W2998170428 @default.
- W4386781606 cites W3010212250 @default.
- W4386781606 cites W3011809489 @default.
- W4386781606 cites W3082656268 @default.
- W4386781606 cites W3089261419 @default.
- W4386781606 cites W3092606344 @default.
- W4386781606 cites W3096507034 @default.
- W4386781606 cites W3132895077 @default.
- W4386781606 cites W3137270498 @default.
- W4386781606 cites W3183780361 @default.
- W4386781606 cites W3184911926 @default.
- W4386781606 cites W3191701998 @default.
- W4386781606 cites W3209938370 @default.
- W4386781606 cites W4206367651 @default.
- W4386781606 cites W4210682947 @default.
- W4386781606 cites W4225127162 @default.
- W4386781606 cites W4249906708 @default.
- W4386781606 cites W4283027533 @default.
- W4386781606 cites W4288747841 @default.
- W4386781606 cites W4312786817 @default.
- W4386781606 cites W4313030865 @default.
- W4386781606 cites W4313885855 @default.
- W4386781606 cites W4323358603 @default.
- W4386781606 doi "https://doi.org/10.1016/j.aei.2023.102163" @default.
- W4386781606 hasPublicationYear "2023" @default.
- W4386781606 type Work @default.
- W4386781606 citedByCount "0" @default.
- W4386781606 crossrefType "journal-article" @default.
- W4386781606 hasAuthorship W4386781606A5017257163 @default.
- W4386781606 hasAuthorship W4386781606A5028441166 @default.
- W4386781606 hasAuthorship W4386781606A5065704197 @default.
- W4386781606 hasAuthorship W4386781606A5070975639 @default.
- W4386781606 hasConcept C10551718 @default.
- W4386781606 hasConcept C124101348 @default.
- W4386781606 hasConcept C132525143 @default.
- W4386781606 hasConcept C138885662 @default.
- W4386781606 hasConcept C154945302 @default.
- W4386781606 hasConcept C195807954 @default.
- W4386781606 hasConcept C204321447 @default.
- W4386781606 hasConcept C23123220 @default.
- W4386781606 hasConcept C2522767166 @default.
- W4386781606 hasConcept C2777530160 @default.
- W4386781606 hasConcept C2778137410 @default.
- W4386781606 hasConcept C34736171 @default.
- W4386781606 hasConcept C36464697 @default.
- W4386781606 hasConcept C41008148 @default.
- W4386781606 hasConcept C41895202 @default.
- W4386781606 hasConcept C80444323 @default.
- W4386781606 hasConceptScore W4386781606C10551718 @default.
- W4386781606 hasConceptScore W4386781606C124101348 @default.
- W4386781606 hasConceptScore W4386781606C132525143 @default.
- W4386781606 hasConceptScore W4386781606C138885662 @default.
- W4386781606 hasConceptScore W4386781606C154945302 @default.
- W4386781606 hasConceptScore W4386781606C195807954 @default.
- W4386781606 hasConceptScore W4386781606C204321447 @default.
- W4386781606 hasConceptScore W4386781606C23123220 @default.
- W4386781606 hasConceptScore W4386781606C2522767166 @default.
- W4386781606 hasConceptScore W4386781606C2777530160 @default.
- W4386781606 hasConceptScore W4386781606C2778137410 @default.
- W4386781606 hasConceptScore W4386781606C34736171 @default.
- W4386781606 hasConceptScore W4386781606C36464697 @default.
- W4386781606 hasConceptScore W4386781606C41008148 @default.
- W4386781606 hasConceptScore W4386781606C41895202 @default.