Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386782009> ?p ?o ?g. }
- W4386782009 endingPage "1789" @default.
- W4386782009 startingPage "1789" @default.
- W4386782009 abstract "Extensive investigation and monitoring of lead (Pb) content of soil is significant for ensuring hazard-free agricultural production, protecting human health, and ecosystem security, especially in a mining area. One temporal period of a hyperspectral image is usually used to estimate the spatial distribution of Pb and other heavy metals, but hyperspectral images are usually difficult to obtain. Multispectral remote-sensing images are more accessible than hyperspectral images. In this study, a deep learning-based model using 3D convolution is proposed to estimate the Pb content from the constructed multi-phase, multispectral remote-sensing images. Multi-phase multispectral remote-sensing images were stacked to generate a data set with more spectral bands to reduce the atmospheric absorptive aerosol effect. At the same time, a neural network based on 3D convolution (3D-ConvNet) was proposed to estimate Pb content based on the constructed data set. Compared with partial least-squares regression (PLSR), random forest regression (RFR), support vector machine regression (SVMR), and gradient-boosting regression (GBR), experimental results showed the proposed 3D-ConvNet has obvious superiority and generates more accurate estimation results, with the prediction dataset coefficient of determination (R2) and the mean normalized bias (MNB) values being 0.90 and 2.63%, respectively. Therefore, it is possible to effectively estimate heavy metal content from multi-phase, multispectral remote-sensing images, and this study provides a new approach to heavy metal pollution monitoring." @default.
- W4386782009 created "2023-09-16" @default.
- W4386782009 creator A5014929862 @default.
- W4386782009 creator A5024708104 @default.
- W4386782009 creator A5053533157 @default.
- W4386782009 creator A5073225421 @default.
- W4386782009 date "2023-09-15" @default.
- W4386782009 modified "2023-10-06" @default.
- W4386782009 title "Deep Learning Based Spatial Distribution Estimation of Soil Pb Using Multi-Phase Multispectral Remote Sensing Images in a Mining Area" @default.
- W4386782009 cites W1601548623 @default.
- W4386782009 cites W1677182931 @default.
- W4386782009 cites W1967849786 @default.
- W4386782009 cites W1972679354 @default.
- W4386782009 cites W1983865151 @default.
- W4386782009 cites W2006792450 @default.
- W4386782009 cites W2024046085 @default.
- W4386782009 cites W2025857348 @default.
- W4386782009 cites W2050756311 @default.
- W4386782009 cites W2052903566 @default.
- W4386782009 cites W2058891717 @default.
- W4386782009 cites W2060455347 @default.
- W4386782009 cites W2089694438 @default.
- W4386782009 cites W2092310951 @default.
- W4386782009 cites W2094916534 @default.
- W4386782009 cites W2188115011 @default.
- W4386782009 cites W2278830514 @default.
- W4386782009 cites W2282736371 @default.
- W4386782009 cites W2322859593 @default.
- W4386782009 cites W2379632150 @default.
- W4386782009 cites W2461102141 @default.
- W4386782009 cites W2464502523 @default.
- W4386782009 cites W2565188411 @default.
- W4386782009 cites W2611453095 @default.
- W4386782009 cites W2664774003 @default.
- W4386782009 cites W2762036603 @default.
- W4386782009 cites W2767757521 @default.
- W4386782009 cites W2780625821 @default.
- W4386782009 cites W2790261141 @default.
- W4386782009 cites W2890296937 @default.
- W4386782009 cites W2912799455 @default.
- W4386782009 cites W2940678725 @default.
- W4386782009 cites W2945020384 @default.
- W4386782009 cites W2967229946 @default.
- W4386782009 cites W2968496090 @default.
- W4386782009 cites W3007918442 @default.
- W4386782009 cites W3011095215 @default.
- W4386782009 cites W3037428236 @default.
- W4386782009 cites W3099850646 @default.
- W4386782009 cites W3102103361 @default.
- W4386782009 cites W3111186230 @default.
- W4386782009 cites W3113008139 @default.
- W4386782009 cites W3120478688 @default.
- W4386782009 cites W3129419346 @default.
- W4386782009 cites W3166273387 @default.
- W4386782009 cites W3176377730 @default.
- W4386782009 cites W3179810233 @default.
- W4386782009 cites W3217012577 @default.
- W4386782009 cites W4210748774 @default.
- W4386782009 cites W4211250212 @default.
- W4386782009 cites W4309586755 @default.
- W4386782009 doi "https://doi.org/10.3390/land12091789" @default.
- W4386782009 hasPublicationYear "2023" @default.
- W4386782009 type Work @default.
- W4386782009 citedByCount "0" @default.
- W4386782009 crossrefType "journal-article" @default.
- W4386782009 hasAuthorship W4386782009A5014929862 @default.
- W4386782009 hasAuthorship W4386782009A5024708104 @default.
- W4386782009 hasAuthorship W4386782009A5053533157 @default.
- W4386782009 hasAuthorship W4386782009A5073225421 @default.
- W4386782009 hasBestOaLocation W43867820091 @default.
- W4386782009 hasConcept C154945302 @default.
- W4386782009 hasConcept C159078339 @default.
- W4386782009 hasConcept C169258074 @default.
- W4386782009 hasConcept C173163844 @default.
- W4386782009 hasConcept C205649164 @default.
- W4386782009 hasConcept C39432304 @default.
- W4386782009 hasConcept C41008148 @default.
- W4386782009 hasConcept C62649853 @default.
- W4386782009 hasConceptScore W4386782009C154945302 @default.
- W4386782009 hasConceptScore W4386782009C159078339 @default.
- W4386782009 hasConceptScore W4386782009C169258074 @default.
- W4386782009 hasConceptScore W4386782009C173163844 @default.
- W4386782009 hasConceptScore W4386782009C205649164 @default.
- W4386782009 hasConceptScore W4386782009C39432304 @default.
- W4386782009 hasConceptScore W4386782009C41008148 @default.
- W4386782009 hasConceptScore W4386782009C62649853 @default.
- W4386782009 hasFunder F4320321001 @default.
- W4386782009 hasFunder F4320335787 @default.
- W4386782009 hasIssue "9" @default.
- W4386782009 hasLocation W43867820091 @default.
- W4386782009 hasOpenAccess W4386782009 @default.
- W4386782009 hasPrimaryLocation W43867820091 @default.
- W4386782009 hasRelatedWork W1552304540 @default.
- W4386782009 hasRelatedWork W1595535338 @default.
- W4386782009 hasRelatedWork W2032332878 @default.
- W4386782009 hasRelatedWork W2039331518 @default.
- W4386782009 hasRelatedWork W2046570986 @default.
- W4386782009 hasRelatedWork W2138205097 @default.