Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386782401> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4386782401 endingPage "194" @default.
- W4386782401 startingPage "182" @default.
- W4386782401 abstract "Western countries rely heavily on wheat, and yield prediction is crucial. Time-series deep learning models, such as Long Short Term Memory (LSTM), have already been explored and applied to yield prediction. Existing literature reports that they perform better than traditional Machine Learning (ML) models. However, the existing LSTM cannot handle heterogeneous datasets (a combination of data that varies and remains static with time). In this paper, we propose an efficient deep learning model that can deal with heterogeneous datasets. We developed the system architecture and applied it to the real-world dataset in the digital agriculture area. We showed that it outperformed the existing ML models." @default.
- W4386782401 created "2023-09-16" @default.
- W4386782401 creator A5025227211 @default.
- W4386782401 creator A5037769267 @default.
- W4386782401 creator A5039829612 @default.
- W4386782401 date "2023-01-01" @default.
- W4386782401 modified "2023-09-27" @default.
- W4386782401 title "A Deep Learning Model for Heterogeneous Dataset Analysis - Application to Winter Wheat Crop Yield Prediction" @default.
- W4386782401 cites W2156373976 @default.
- W4386782401 cites W2186382263 @default.
- W4386782401 cites W2416782259 @default.
- W4386782401 cites W2790454634 @default.
- W4386782401 cites W2912290085 @default.
- W4386782401 cites W2979666105 @default.
- W4386782401 cites W2990480734 @default.
- W4386782401 cites W2998634367 @default.
- W4386782401 cites W2999658315 @default.
- W4386782401 cites W3000098473 @default.
- W4386782401 cites W3006645913 @default.
- W4386782401 cites W3029014910 @default.
- W4386782401 cites W3079760979 @default.
- W4386782401 cites W3141516540 @default.
- W4386782401 cites W3142740975 @default.
- W4386782401 cites W3199475877 @default.
- W4386782401 cites W4210675531 @default.
- W4386782401 cites W4283210400 @default.
- W4386782401 cites W4283525004 @default.
- W4386782401 cites W4308156322 @default.
- W4386782401 cites W4312178756 @default.
- W4386782401 cites W4313584940 @default.
- W4386782401 cites W4386159646 @default.
- W4386782401 doi "https://doi.org/10.1007/978-3-031-43838-7_14" @default.
- W4386782401 hasPublicationYear "2023" @default.
- W4386782401 type Work @default.
- W4386782401 citedByCount "0" @default.
- W4386782401 crossrefType "book-chapter" @default.
- W4386782401 hasAuthorship W4386782401A5025227211 @default.
- W4386782401 hasAuthorship W4386782401A5037769267 @default.
- W4386782401 hasAuthorship W4386782401A5039829612 @default.
- W4386782401 hasConcept C108583219 @default.
- W4386782401 hasConcept C119857082 @default.
- W4386782401 hasConcept C133488467 @default.
- W4386782401 hasConcept C134121241 @default.
- W4386782401 hasConcept C147168706 @default.
- W4386782401 hasConcept C151406439 @default.
- W4386782401 hasConcept C154945302 @default.
- W4386782401 hasConcept C191897082 @default.
- W4386782401 hasConcept C192562407 @default.
- W4386782401 hasConcept C41008148 @default.
- W4386782401 hasConcept C50644808 @default.
- W4386782401 hasConceptScore W4386782401C108583219 @default.
- W4386782401 hasConceptScore W4386782401C119857082 @default.
- W4386782401 hasConceptScore W4386782401C133488467 @default.
- W4386782401 hasConceptScore W4386782401C134121241 @default.
- W4386782401 hasConceptScore W4386782401C147168706 @default.
- W4386782401 hasConceptScore W4386782401C151406439 @default.
- W4386782401 hasConceptScore W4386782401C154945302 @default.
- W4386782401 hasConceptScore W4386782401C191897082 @default.
- W4386782401 hasConceptScore W4386782401C192562407 @default.
- W4386782401 hasConceptScore W4386782401C41008148 @default.
- W4386782401 hasConceptScore W4386782401C50644808 @default.
- W4386782401 hasLocation W43867824011 @default.
- W4386782401 hasOpenAccess W4386782401 @default.
- W4386782401 hasPrimaryLocation W43867824011 @default.
- W4386782401 hasRelatedWork W2795261237 @default.
- W4386782401 hasRelatedWork W3014300295 @default.
- W4386782401 hasRelatedWork W3164822677 @default.
- W4386782401 hasRelatedWork W4223943233 @default.
- W4386782401 hasRelatedWork W4225161397 @default.
- W4386782401 hasRelatedWork W4312200629 @default.
- W4386782401 hasRelatedWork W4360585206 @default.
- W4386782401 hasRelatedWork W4364306694 @default.
- W4386782401 hasRelatedWork W4380075502 @default.
- W4386782401 hasRelatedWork W4380086463 @default.
- W4386782401 isParatext "false" @default.
- W4386782401 isRetracted "false" @default.
- W4386782401 workType "book-chapter" @default.