Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386782775> ?p ?o ?g. }
- W4386782775 endingPage "120371" @default.
- W4386782775 startingPage "120371" @default.
- W4386782775 abstract "One of the interesting aspects of EEG data is the presence of temporally stable and spatially coherent patterns of activity, known as microstates, which have been linked to various cognitive and clinical phenomena. However, there is still no general agreement on the interpretation of microstate analysis. Various clustering algorithms have been used for microstate computation, and multiple studies suggest that the microstate time series may provide insight into the neural activity of the brain in the resting state. This study addresses two gaps in the literature. Firstly, by applying several state-of-the-art microstate algorithms to a large dataset of EEG recordings, we aim to characterise and describe various microstate algorithms. We demonstrate and discuss why the three “classically” used algorithms ((T)AAHC and modified K-Means) yield virtually the same results, while HMM algorithm generates the most dissimilar results. Secondly, we aim to test the hypothesis that dynamical microstate properties might be, to a large extent, determined by the linear characteristics of the underlying EEG signal, in particular, by the cross-covariance and autocorrelation structure of the EEG data. To this end, we generated a Fourier transform surrogate of the EEG signal to compare microstate properties. Here, we found that these are largely similar, thus hinting that microstate properties depend to a very high degree on the linear covariance and autocorrelation structure of the underlying EEG data. Finally, we treated the EEG data as a vector autoregression process, estimated its parameters, and generated surrogate stationary and linear data from fitted VAR. We observed that such a linear model generates microstates highly comparable to those estimated from real EEG data, supporting the conclusion that a linear EEG model can help with the methodological and clinical interpretation of both static and dynamic human brain microstate properties." @default.
- W4386782775 created "2023-09-16" @default.
- W4386782775 creator A5040682292 @default.
- W4386782775 creator A5054052370 @default.
- W4386782775 date "2023-11-01" @default.
- W4386782775 modified "2023-10-07" @default.
- W4386782775 title "Towards a dynamical understanding of microstate analysis of M/EEG data" @default.
- W4386782775 cites W1967648286 @default.
- W4386782775 cites W1970695058 @default.
- W4386782775 cites W1976522288 @default.
- W4386782775 cites W1979612257 @default.
- W4386782775 cites W1983737871 @default.
- W4386782775 cites W1987430298 @default.
- W4386782775 cites W2001015421 @default.
- W4386782775 cites W2009170888 @default.
- W4386782775 cites W2011251121 @default.
- W4386782775 cites W2044461825 @default.
- W4386782775 cites W2053186076 @default.
- W4386782775 cites W2056465968 @default.
- W4386782775 cites W2057569029 @default.
- W4386782775 cites W2082562451 @default.
- W4386782775 cites W2082731046 @default.
- W4386782775 cites W2087887008 @default.
- W4386782775 cites W2098418070 @default.
- W4386782775 cites W2098746383 @default.
- W4386782775 cites W2099943815 @default.
- W4386782775 cites W2100959503 @default.
- W4386782775 cites W2122451799 @default.
- W4386782775 cites W2123649031 @default.
- W4386782775 cites W2130031954 @default.
- W4386782775 cites W2131216884 @default.
- W4386782775 cites W2137526583 @default.
- W4386782775 cites W2146141169 @default.
- W4386782775 cites W2150593711 @default.
- W4386782775 cites W2162425795 @default.
- W4386782775 cites W2164784039 @default.
- W4386782775 cites W2172109539 @default.
- W4386782775 cites W2259576239 @default.
- W4386782775 cites W2296519936 @default.
- W4386782775 cites W2302501749 @default.
- W4386782775 cites W2594429360 @default.
- W4386782775 cites W2621961142 @default.
- W4386782775 cites W2888949312 @default.
- W4386782775 cites W2896846197 @default.
- W4386782775 cites W2901717894 @default.
- W4386782775 cites W2911129983 @default.
- W4386782775 cites W2913095566 @default.
- W4386782775 cites W2968451269 @default.
- W4386782775 cites W3136394686 @default.
- W4386782775 doi "https://doi.org/10.1016/j.neuroimage.2023.120371" @default.
- W4386782775 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37716592" @default.
- W4386782775 hasPublicationYear "2023" @default.
- W4386782775 type Work @default.
- W4386782775 citedByCount "0" @default.
- W4386782775 crossrefType "journal-article" @default.
- W4386782775 hasAuthorship W4386782775A5040682292 @default.
- W4386782775 hasAuthorship W4386782775A5054052370 @default.
- W4386782775 hasBestOaLocation W43867827751 @default.
- W4386782775 hasConcept C105795698 @default.
- W4386782775 hasConcept C121332964 @default.
- W4386782775 hasConcept C121864883 @default.
- W4386782775 hasConcept C142806159 @default.
- W4386782775 hasConcept C153180895 @default.
- W4386782775 hasConcept C154945302 @default.
- W4386782775 hasConcept C15744967 @default.
- W4386782775 hasConcept C158622935 @default.
- W4386782775 hasConcept C169760540 @default.
- W4386782775 hasConcept C178650346 @default.
- W4386782775 hasConcept C33923547 @default.
- W4386782775 hasConcept C41008148 @default.
- W4386782775 hasConcept C45424060 @default.
- W4386782775 hasConcept C522805319 @default.
- W4386782775 hasConcept C5297727 @default.
- W4386782775 hasConcept C62520636 @default.
- W4386782775 hasConcept C73555534 @default.
- W4386782775 hasConceptScore W4386782775C105795698 @default.
- W4386782775 hasConceptScore W4386782775C121332964 @default.
- W4386782775 hasConceptScore W4386782775C121864883 @default.
- W4386782775 hasConceptScore W4386782775C142806159 @default.
- W4386782775 hasConceptScore W4386782775C153180895 @default.
- W4386782775 hasConceptScore W4386782775C154945302 @default.
- W4386782775 hasConceptScore W4386782775C15744967 @default.
- W4386782775 hasConceptScore W4386782775C158622935 @default.
- W4386782775 hasConceptScore W4386782775C169760540 @default.
- W4386782775 hasConceptScore W4386782775C178650346 @default.
- W4386782775 hasConceptScore W4386782775C33923547 @default.
- W4386782775 hasConceptScore W4386782775C41008148 @default.
- W4386782775 hasConceptScore W4386782775C45424060 @default.
- W4386782775 hasConceptScore W4386782775C522805319 @default.
- W4386782775 hasConceptScore W4386782775C5297727 @default.
- W4386782775 hasConceptScore W4386782775C62520636 @default.
- W4386782775 hasConceptScore W4386782775C73555534 @default.
- W4386782775 hasLocation W43867827751 @default.
- W4386782775 hasLocation W43867827752 @default.
- W4386782775 hasOpenAccess W4386782775 @default.
- W4386782775 hasPrimaryLocation W43867827751 @default.
- W4386782775 hasRelatedWork W2491678646 @default.
- W4386782775 hasRelatedWork W2889174617 @default.