Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386783472> ?p ?o ?g. }
- W4386783472 endingPage "121588" @default.
- W4386783472 startingPage "121588" @default.
- W4386783472 abstract "The advent of the internet has facilitated the wide spread of online disinformation and thus poses severe threats to the trustworthiness of cyberspace. Two types of methods are proposed to detect online disinformation: traditional machine learning-based and deep learning-based, where the former is limited due to the shallow representation and the latter is hindered by its lack of interpretability. In this study, we develop a novel model named interpretable wide and deep model for text (IWDMT) for disinformation detection which incorporates the interpretability benefits of traditional machine learning and the representation advantages of deep learning. Furthermore, we advance the interpretability of existing models by utilizing neural topic models to capture topical semantic representations and the attention mechanism to extract sequential syntactic representations. The proposed IWDMT is a mixture of a generative model and a discriminative model, and we devise a novel learning algorithm for it. Experiments on deceptive reviews and fraudulent emails demonstrated the proposed IWDMT not only outperformed baselines but was also able to provide a rich set of angles of interpretation for management insights. The higher accuracy and improved interpretability in detecting online disinformation will benefit four stakeholder groups: internet users, managers, researchers, and the government." @default.
- W4386783472 created "2023-09-16" @default.
- W4386783472 creator A5004103125 @default.
- W4386783472 creator A5008726578 @default.
- W4386783472 creator A5010398730 @default.
- W4386783472 creator A5012250701 @default.
- W4386783472 creator A5026328529 @default.
- W4386783472 creator A5030014366 @default.
- W4386783472 date "2024-03-01" @default.
- W4386783472 modified "2023-09-27" @default.
- W4386783472 title "An interpretable wide and deep model for online disinformation detection" @default.
- W4386783472 cites W1968234402 @default.
- W4386783472 cites W1991135569 @default.
- W4386783472 cites W2146341620 @default.
- W4386783472 cites W2250370120 @default.
- W4386783472 cites W2251645975 @default.
- W4386783472 cites W2282821441 @default.
- W4386783472 cites W2549624130 @default.
- W4386783472 cites W2554367394 @default.
- W4386783472 cites W2561920916 @default.
- W4386783472 cites W2562273329 @default.
- W4386783472 cites W2618063639 @default.
- W4386783472 cites W2776990447 @default.
- W4386783472 cites W2795296342 @default.
- W4386783472 cites W2799701389 @default.
- W4386783472 cites W2809476703 @default.
- W4386783472 cites W2895142658 @default.
- W4386783472 cites W2912078280 @default.
- W4386783472 cites W2919115771 @default.
- W4386783472 cites W2921404976 @default.
- W4386783472 cites W2944103016 @default.
- W4386783472 cites W2971123115 @default.
- W4386783472 cites W2977886427 @default.
- W4386783472 cites W2982137384 @default.
- W4386783472 cites W2992457155 @default.
- W4386783472 cites W2996061341 @default.
- W4386783472 cites W3003892205 @default.
- W4386783472 cites W3011573535 @default.
- W4386783472 cites W3022924198 @default.
- W4386783472 cites W3034020579 @default.
- W4386783472 cites W3037764089 @default.
- W4386783472 cites W3101155479 @default.
- W4386783472 cites W3101380508 @default.
- W4386783472 cites W3105271639 @default.
- W4386783472 cites W3126813721 @default.
- W4386783472 cites W3130784583 @default.
- W4386783472 cites W3139253735 @default.
- W4386783472 cites W3157731560 @default.
- W4386783472 cites W3160441598 @default.
- W4386783472 cites W3166931231 @default.
- W4386783472 cites W3177472101 @default.
- W4386783472 cites W3196698200 @default.
- W4386783472 cites W3199299750 @default.
- W4386783472 cites W3201762888 @default.
- W4386783472 cites W3205757788 @default.
- W4386783472 cites W3213114179 @default.
- W4386783472 cites W3215879207 @default.
- W4386783472 cites W4210530275 @default.
- W4386783472 cites W4210786858 @default.
- W4386783472 cites W4210891265 @default.
- W4386783472 cites W4214580531 @default.
- W4386783472 cites W4220685350 @default.
- W4386783472 cites W4224324956 @default.
- W4386783472 cites W4281688135 @default.
- W4386783472 cites W4286373861 @default.
- W4386783472 cites W4292133440 @default.
- W4386783472 cites W4292157811 @default.
- W4386783472 cites W4294805062 @default.
- W4386783472 cites W4294958839 @default.
- W4386783472 cites W4308497888 @default.
- W4386783472 cites W4309573027 @default.
- W4386783472 cites W4312382905 @default.
- W4386783472 cites W4316038746 @default.
- W4386783472 cites W4317233797 @default.
- W4386783472 cites W4320913149 @default.
- W4386783472 doi "https://doi.org/10.1016/j.eswa.2023.121588" @default.
- W4386783472 hasPublicationYear "2024" @default.
- W4386783472 type Work @default.
- W4386783472 citedByCount "0" @default.
- W4386783472 crossrefType "journal-article" @default.
- W4386783472 hasAuthorship W4386783472A5004103125 @default.
- W4386783472 hasAuthorship W4386783472A5008726578 @default.
- W4386783472 hasAuthorship W4386783472A5010398730 @default.
- W4386783472 hasAuthorship W4386783472A5012250701 @default.
- W4386783472 hasAuthorship W4386783472A5026328529 @default.
- W4386783472 hasAuthorship W4386783472A5030014366 @default.
- W4386783472 hasConcept C108583219 @default.
- W4386783472 hasConcept C110875604 @default.
- W4386783472 hasConcept C119857082 @default.
- W4386783472 hasConcept C136764020 @default.
- W4386783472 hasConcept C154945302 @default.
- W4386783472 hasConcept C17744445 @default.
- W4386783472 hasConcept C199539241 @default.
- W4386783472 hasConcept C204321447 @default.
- W4386783472 hasConcept C2776359362 @default.
- W4386783472 hasConcept C2776552730 @default.
- W4386783472 hasConcept C2781067378 @default.
- W4386783472 hasConcept C41008148 @default.