Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386786176> ?p ?o ?g. }
- W4386786176 abstract "Purpose This study aims to assess the predictive performance of various factors on Bitcoin returns, used for the development of a robust forecasting support decision model using machine learning techniques, before and during the COVID-19 pandemic. More specifically, the authors investigate the impact of the investor's sentiment on forecasting the Bitcoin returns. Design/methodology/approach This method uses feature selection techniques to assess the predictive performance of the different factors on the Bitcoin returns. Subsequently, the authors developed a forecasting model for the Bitcoin returns by evaluating the accuracy of three machine learning models, namely the one-dimensional convolutional neural network (1D-CNN), the bidirectional deep learning long short-term memory (BLSTM) neural networks and the support vector machine model. Findings The findings shed light on the importance of the investor's sentiment in enhancing the accuracy of the return forecasts. Furthermore, the investor's sentiment, the economic policy uncertainty (EPU), gold and the financial stress index (FSI) are the top best determinants before the COVID-19 outbreak. However, there was a significant decrease in the importance of financial uncertainty (FSI and EPU) during the COVID-19 pandemic, proving that investors attach much more importance to the sentimental side than to the traditional uncertainty factors. Regarding the forecasting model accuracy, the authors found that the 1D-CNN model showed the lowest prediction error before and during the COVID-19 and outperformed the other models. Therefore, it represents the best-performing algorithm among its tested counterparts, while the BLSTM is the least accurate model. Practical implications Moreover, this study contributes to a better understanding relevant for investors and policymakers to better forecast the returns based on a forecasting model, which can be used as a decision-making support tool. Therefore, the obtained results can drive the investors to uncover potential determinants, which forecast the Bitcoin returns. It actually gives more weight to the sentiment rather than financial uncertainties factors during the pandemic crisis. Originality/value To the authors’ knowledge, this is the first study to have attempted to construct a novel crypto sentiment measure and use it to develop a Bitcoin forecasting model. In fact, the development of a robust forecasting model, using machine learning techniques, offers a practical value as a decision-making support tool for investment strategies and policy formulation." @default.
- W4386786176 created "2023-09-16" @default.
- W4386786176 creator A5005919926 @default.
- W4386786176 creator A5011288611 @default.
- W4386786176 creator A5024094835 @default.
- W4386786176 creator A5080381750 @default.
- W4386786176 date "2023-09-18" @default.
- W4386786176 modified "2023-09-27" @default.
- W4386786176 title "Forecasting Bitcoin returns using machine learning algorithms: impact of investor sentiment" @default.
- W4386786176 cites W1970694313 @default.
- W4386786176 cites W2131774270 @default.
- W4386786176 cites W2156909104 @default.
- W4386786176 cites W2160275010 @default.
- W4386786176 cites W2278936033 @default.
- W4386786176 cites W2694190980 @default.
- W4386786176 cites W2783933003 @default.
- W4386786176 cites W2799345028 @default.
- W4386786176 cites W2800569739 @default.
- W4386786176 cites W2802608535 @default.
- W4386786176 cites W2892922781 @default.
- W4386786176 cites W2896430717 @default.
- W4386786176 cites W2899742462 @default.
- W4386786176 cites W2900967578 @default.
- W4386786176 cites W2910062285 @default.
- W4386786176 cites W2910161434 @default.
- W4386786176 cites W2921045310 @default.
- W4386786176 cites W2942223364 @default.
- W4386786176 cites W2973339388 @default.
- W4386786176 cites W3008936398 @default.
- W4386786176 cites W3026175620 @default.
- W4386786176 cites W3043327973 @default.
- W4386786176 cites W3122183745 @default.
- W4386786176 cites W3126081245 @default.
- W4386786176 cites W3164779203 @default.
- W4386786176 cites W3185744861 @default.
- W4386786176 cites W4224247270 @default.
- W4386786176 doi "https://doi.org/10.1108/emjb-03-2023-0086" @default.
- W4386786176 hasPublicationYear "2023" @default.
- W4386786176 type Work @default.
- W4386786176 citedByCount "0" @default.
- W4386786176 crossrefType "journal-article" @default.
- W4386786176 hasAuthorship W4386786176A5005919926 @default.
- W4386786176 hasAuthorship W4386786176A5011288611 @default.
- W4386786176 hasAuthorship W4386786176A5024094835 @default.
- W4386786176 hasAuthorship W4386786176A5080381750 @default.
- W4386786176 hasConcept C108583219 @default.
- W4386786176 hasConcept C119857082 @default.
- W4386786176 hasConcept C12267149 @default.
- W4386786176 hasConcept C136764020 @default.
- W4386786176 hasConcept C138885662 @default.
- W4386786176 hasConcept C142724271 @default.
- W4386786176 hasConcept C148483581 @default.
- W4386786176 hasConcept C154945302 @default.
- W4386786176 hasConcept C2776401178 @default.
- W4386786176 hasConcept C2777382242 @default.
- W4386786176 hasConcept C2778827112 @default.
- W4386786176 hasConcept C2779134260 @default.
- W4386786176 hasConcept C3008058167 @default.
- W4386786176 hasConcept C41008148 @default.
- W4386786176 hasConcept C41895202 @default.
- W4386786176 hasConcept C50644808 @default.
- W4386786176 hasConcept C524204448 @default.
- W4386786176 hasConcept C66402592 @default.
- W4386786176 hasConcept C71924100 @default.
- W4386786176 hasConcept C81363708 @default.
- W4386786176 hasConceptScore W4386786176C108583219 @default.
- W4386786176 hasConceptScore W4386786176C119857082 @default.
- W4386786176 hasConceptScore W4386786176C12267149 @default.
- W4386786176 hasConceptScore W4386786176C136764020 @default.
- W4386786176 hasConceptScore W4386786176C138885662 @default.
- W4386786176 hasConceptScore W4386786176C142724271 @default.
- W4386786176 hasConceptScore W4386786176C148483581 @default.
- W4386786176 hasConceptScore W4386786176C154945302 @default.
- W4386786176 hasConceptScore W4386786176C2776401178 @default.
- W4386786176 hasConceptScore W4386786176C2777382242 @default.
- W4386786176 hasConceptScore W4386786176C2778827112 @default.
- W4386786176 hasConceptScore W4386786176C2779134260 @default.
- W4386786176 hasConceptScore W4386786176C3008058167 @default.
- W4386786176 hasConceptScore W4386786176C41008148 @default.
- W4386786176 hasConceptScore W4386786176C41895202 @default.
- W4386786176 hasConceptScore W4386786176C50644808 @default.
- W4386786176 hasConceptScore W4386786176C524204448 @default.
- W4386786176 hasConceptScore W4386786176C66402592 @default.
- W4386786176 hasConceptScore W4386786176C71924100 @default.
- W4386786176 hasConceptScore W4386786176C81363708 @default.
- W4386786176 hasLocation W43867861761 @default.
- W4386786176 hasOpenAccess W4386786176 @default.
- W4386786176 hasPrimaryLocation W43867861761 @default.
- W4386786176 hasRelatedWork W2942650110 @default.
- W4386786176 hasRelatedWork W2968586400 @default.
- W4386786176 hasRelatedWork W3021430260 @default.
- W4386786176 hasRelatedWork W3192794374 @default.
- W4386786176 hasRelatedWork W3200179079 @default.
- W4386786176 hasRelatedWork W4281986673 @default.
- W4386786176 hasRelatedWork W4312417841 @default.
- W4386786176 hasRelatedWork W4321369474 @default.
- W4386786176 hasRelatedWork W4362613237 @default.
- W4386786176 hasRelatedWork W4386104489 @default.
- W4386786176 isParatext "false" @default.
- W4386786176 isRetracted "false" @default.