Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386788116> ?p ?o ?g. }
- W4386788116 endingPage "105671" @default.
- W4386788116 startingPage "105671" @default.
- W4386788116 abstract "Mineral prospectivity mapping constitutes an efficient tool for delineating areas of highest interest to guide future exploration. Multiple knowledge-driven approaches have been applied for the creation of prospectivity maps for deep-sea ferromanganese (Fe-Mn) crusts over the last decades. The results of a data-driven approach making use of an extensive data collection exercise on occurrences of Fe-Mn crusts in the World Ocean and recent increase in global marine datasets are presented. A Random Forest machine learning algorithm is applied, and results compared with previously established expert-driven maps. Optimal predictive conditions for the algorithm are observed for (i) a forest size superior to a hundred trees, (ii) a training dataset larger than 10%, and (iii) a number of predictors to be used as nodes superior to two. The confusion matrix and out-of-bag errors on the remaining unused data highlight excellent predictive capabilities of the trained model with a prediction accuracy for Fe-Mn crusts of 87.2% and 98.2% for non-crusts locations, with a Kohen’s K index of 0.84, validating its application for prediction at the World scale. The slope of the seafloor, sediment thickness, sediment type, biological productivity, and abyssal mountain constitute the five strongest explanatory variables in predicting the occurrence of Fe-Mn crusts. Most ‘hand-drawn’ knowledge-driven prospective areas are also considered prospective by the random forest algorithm with notable exceptions along the coast of the American continent. However, poor correlation is observed with knowledge-driven GIS-based criterion mapping as the Random Forest considers un-prospective most target areas from the GIS approach. Overall, the Random Forest prediction performs better in predicting a high chance of Fe-Mn crust occurrence in ISA licensed area than the GIS approach, which constitutes an external validation of the predictive quality of the random forest model." @default.
- W4386788116 created "2023-09-16" @default.
- W4386788116 creator A5016414963 @default.
- W4386788116 creator A5017147882 @default.
- W4386788116 creator A5035895741 @default.
- W4386788116 creator A5042216155 @default.
- W4386788116 creator A5050341244 @default.
- W4386788116 creator A5074301061 @default.
- W4386788116 date "2023-11-01" @default.
- W4386788116 modified "2023-10-11" @default.
- W4386788116 title "Application of random-forest machine learning algorithm for mineral predictive mapping of Fe-Mn crusts in the World Ocean" @default.
- W4386788116 cites W1953195621 @default.
- W4386788116 cites W1973595880 @default.
- W4386788116 cites W1974058871 @default.
- W4386788116 cites W1983865151 @default.
- W4386788116 cites W1984609091 @default.
- W4386788116 cites W2029647685 @default.
- W4386788116 cites W2054632966 @default.
- W4386788116 cites W2065310278 @default.
- W4386788116 cites W2066087286 @default.
- W4386788116 cites W2088816180 @default.
- W4386788116 cites W2164777277 @default.
- W4386788116 cites W2201593588 @default.
- W4386788116 cites W2243193383 @default.
- W4386788116 cites W2307172074 @default.
- W4386788116 cites W2519545666 @default.
- W4386788116 cites W2520905438 @default.
- W4386788116 cites W2524730837 @default.
- W4386788116 cites W2581960603 @default.
- W4386788116 cites W2586159106 @default.
- W4386788116 cites W2606355498 @default.
- W4386788116 cites W2622898227 @default.
- W4386788116 cites W2757672803 @default.
- W4386788116 cites W2763052938 @default.
- W4386788116 cites W2768818485 @default.
- W4386788116 cites W2884272297 @default.
- W4386788116 cites W2887319714 @default.
- W4386788116 cites W2897426201 @default.
- W4386788116 cites W2897797528 @default.
- W4386788116 cites W2905891861 @default.
- W4386788116 cites W2911964244 @default.
- W4386788116 cites W2919686461 @default.
- W4386788116 cites W2922377275 @default.
- W4386788116 cites W2954328919 @default.
- W4386788116 cites W2975434887 @default.
- W4386788116 cites W2979128757 @default.
- W4386788116 cites W2982159501 @default.
- W4386788116 cites W2996874596 @default.
- W4386788116 cites W2999925445 @default.
- W4386788116 cites W3037884121 @default.
- W4386788116 cites W3090251292 @default.
- W4386788116 cites W3090941352 @default.
- W4386788116 cites W3111590410 @default.
- W4386788116 cites W3127791010 @default.
- W4386788116 cites W3139082834 @default.
- W4386788116 cites W3166523202 @default.
- W4386788116 cites W342324839 @default.
- W4386788116 cites W4212870562 @default.
- W4386788116 cites W4280579001 @default.
- W4386788116 cites W4386049746 @default.
- W4386788116 cites W73486156 @default.
- W4386788116 cites W866664596 @default.
- W4386788116 doi "https://doi.org/10.1016/j.oregeorev.2023.105671" @default.
- W4386788116 hasPublicationYear "2023" @default.
- W4386788116 type Work @default.
- W4386788116 citedByCount "1" @default.
- W4386788116 crossrefType "journal-article" @default.
- W4386788116 hasAuthorship W4386788116A5016414963 @default.
- W4386788116 hasAuthorship W4386788116A5017147882 @default.
- W4386788116 hasAuthorship W4386788116A5035895741 @default.
- W4386788116 hasAuthorship W4386788116A5042216155 @default.
- W4386788116 hasAuthorship W4386788116A5050341244 @default.
- W4386788116 hasAuthorship W4386788116A5074301061 @default.
- W4386788116 hasBestOaLocation W43867881161 @default.
- W4386788116 hasConcept C109007969 @default.
- W4386788116 hasConcept C111368507 @default.
- W4386788116 hasConcept C11171543 @default.
- W4386788116 hasConcept C11413529 @default.
- W4386788116 hasConcept C114793014 @default.
- W4386788116 hasConcept C119857082 @default.
- W4386788116 hasConcept C127313418 @default.
- W4386788116 hasConcept C15744967 @default.
- W4386788116 hasConcept C169258074 @default.
- W4386788116 hasConcept C2781140086 @default.
- W4386788116 hasConcept C2816523 @default.
- W4386788116 hasConcept C33613203 @default.
- W4386788116 hasConcept C41008148 @default.
- W4386788116 hasConcept C55358776 @default.
- W4386788116 hasConcept C84525736 @default.
- W4386788116 hasConceptScore W4386788116C109007969 @default.
- W4386788116 hasConceptScore W4386788116C111368507 @default.
- W4386788116 hasConceptScore W4386788116C11171543 @default.
- W4386788116 hasConceptScore W4386788116C11413529 @default.
- W4386788116 hasConceptScore W4386788116C114793014 @default.
- W4386788116 hasConceptScore W4386788116C119857082 @default.
- W4386788116 hasConceptScore W4386788116C127313418 @default.
- W4386788116 hasConceptScore W4386788116C15744967 @default.
- W4386788116 hasConceptScore W4386788116C169258074 @default.