Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386789425> ?p ?o ?g. }
- W4386789425 abstract "Abstract In recent years machine learning has transformed many aspects of the drug discovery process including small molecule design for which the prediction of the bioactivity is an integral part. Leveraging structural information about the interactions between a small molecule and its protein target has great potential for downstream machine learning scoring approaches, but is fundamentally limited by the accuracy with which protein:ligand complex structures can be predicted in a reliable and automated fashion. With the goal of finding practical approaches to generating useful kinase:inhibitor complex geometries for downstream machine learning scoring approaches, we present a kinase-centric docking benchmark assessing the performance of different classes of docking and pose selection strategies to assess how well experimentally observed binding modes are recapitulated in a realistic crossdocking scenario. The assembled benchmark data set focuses on the well-studied protein kinase family and comprises a subset of 589 protein structures co-crystallized with 423 ATP-competitive ligands. We find that the docking methods biased by the co-crystallized ligand—utilizing shape overlap with or without maximum common substructure matching—are more successful in recovering binding poses than standard physics-based docking alone. Also, docking into multiple structures significantly increases the chance to generate a low RMSD docking pose. Docking utilizing an approach that combines all three methods (Posit) into structures with the most similar co-crystallized ligands according to shape and electrostatics proofed to be the most efficient way to reproduce binding poses achieving a success rate of 66.9 % across all included systems. The studied docking and pose selection strategies—which utilize the OpenEye Toolkit—were implemented into pipelines of the KinoML framework allowing automated and reliable protein:ligand complex generation for future downstream machine learning tasks. Although focused on protein kinases, we believe the general findings can also be transferred to other protein families." @default.
- W4386789425 created "2023-09-16" @default.
- W4386789425 creator A5049958324 @default.
- W4386789425 creator A5057416678 @default.
- W4386789425 creator A5083925073 @default.
- W4386789425 creator A5084011333 @default.
- W4386789425 date "2023-09-14" @default.
- W4386789425 modified "2023-10-17" @default.
- W4386789425 title "Benchmarking Cross-Docking Strategies for Structure-Informed Machine Learning in Kinase Drug Discovery" @default.
- W4386789425 cites W1968426398 @default.
- W4386789425 cites W1968450779 @default.
- W4386789425 cites W1975436091 @default.
- W4386789425 cites W1978171318 @default.
- W4386789425 cites W2018211396 @default.
- W4386789425 cites W2121895929 @default.
- W4386789425 cites W2130479394 @default.
- W4386789425 cites W2151971205 @default.
- W4386789425 cites W2189911347 @default.
- W4386789425 cites W2206437677 @default.
- W4386789425 cites W2225513621 @default.
- W4386789425 cites W2296575546 @default.
- W4386789425 cites W2334483166 @default.
- W4386789425 cites W2558999090 @default.
- W4386789425 cites W2578119541 @default.
- W4386789425 cites W2751756351 @default.
- W4386789425 cites W2895884529 @default.
- W4386789425 cites W2903125126 @default.
- W4386789425 cites W2922340164 @default.
- W4386789425 cites W2937307539 @default.
- W4386789425 cites W2951428751 @default.
- W4386789425 cites W2969325194 @default.
- W4386789425 cites W2985816842 @default.
- W4386789425 cites W3014474086 @default.
- W4386789425 cites W3081528324 @default.
- W4386789425 cites W3082411326 @default.
- W4386789425 cites W3093634533 @default.
- W4386789425 cites W3113150977 @default.
- W4386789425 cites W3157853087 @default.
- W4386789425 cites W3161074857 @default.
- W4386789425 cites W3180228137 @default.
- W4386789425 cites W3206116522 @default.
- W4386789425 cites W3215525389 @default.
- W4386789425 cites W4213154744 @default.
- W4386789425 cites W4281381643 @default.
- W4386789425 cites W4281701642 @default.
- W4386789425 doi "https://doi.org/10.1101/2023.09.11.557138" @default.
- W4386789425 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37745489" @default.
- W4386789425 hasPublicationYear "2023" @default.
- W4386789425 type Work @default.
- W4386789425 citedByCount "0" @default.
- W4386789425 crossrefType "posted-content" @default.
- W4386789425 hasAuthorship W4386789425A5049958324 @default.
- W4386789425 hasAuthorship W4386789425A5057416678 @default.
- W4386789425 hasAuthorship W4386789425A5083925073 @default.
- W4386789425 hasAuthorship W4386789425A5084011333 @default.
- W4386789425 hasBestOaLocation W43867894251 @default.
- W4386789425 hasConcept C103697762 @default.
- W4386789425 hasConcept C119145174 @default.
- W4386789425 hasConcept C119857082 @default.
- W4386789425 hasConcept C144133560 @default.
- W4386789425 hasConcept C154945302 @default.
- W4386789425 hasConcept C159110408 @default.
- W4386789425 hasConcept C162853370 @default.
- W4386789425 hasConcept C41008148 @default.
- W4386789425 hasConcept C41685203 @default.
- W4386789425 hasConcept C47701112 @default.
- W4386789425 hasConcept C55493867 @default.
- W4386789425 hasConcept C60644358 @default.
- W4386789425 hasConcept C70721500 @default.
- W4386789425 hasConcept C71924100 @default.
- W4386789425 hasConcept C74187038 @default.
- W4386789425 hasConcept C77319485 @default.
- W4386789425 hasConcept C86251818 @default.
- W4386789425 hasConcept C86803240 @default.
- W4386789425 hasConceptScore W4386789425C103697762 @default.
- W4386789425 hasConceptScore W4386789425C119145174 @default.
- W4386789425 hasConceptScore W4386789425C119857082 @default.
- W4386789425 hasConceptScore W4386789425C144133560 @default.
- W4386789425 hasConceptScore W4386789425C154945302 @default.
- W4386789425 hasConceptScore W4386789425C159110408 @default.
- W4386789425 hasConceptScore W4386789425C162853370 @default.
- W4386789425 hasConceptScore W4386789425C41008148 @default.
- W4386789425 hasConceptScore W4386789425C41685203 @default.
- W4386789425 hasConceptScore W4386789425C47701112 @default.
- W4386789425 hasConceptScore W4386789425C55493867 @default.
- W4386789425 hasConceptScore W4386789425C60644358 @default.
- W4386789425 hasConceptScore W4386789425C70721500 @default.
- W4386789425 hasConceptScore W4386789425C71924100 @default.
- W4386789425 hasConceptScore W4386789425C74187038 @default.
- W4386789425 hasConceptScore W4386789425C77319485 @default.
- W4386789425 hasConceptScore W4386789425C86251818 @default.
- W4386789425 hasConceptScore W4386789425C86803240 @default.
- W4386789425 hasLocation W43867894251 @default.
- W4386789425 hasLocation W43867894252 @default.
- W4386789425 hasOpenAccess W4386789425 @default.
- W4386789425 hasPrimaryLocation W43867894251 @default.
- W4386789425 hasRelatedWork W1714666523 @default.
- W4386789425 hasRelatedWork W1982356260 @default.
- W4386789425 hasRelatedWork W2078142106 @default.
- W4386789425 hasRelatedWork W2269591907 @default.