Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386792711> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4386792711 abstract "Due to the complexity of generalizing and modeling the series of brain signals, detecting emotions in people with sensory disabilities still continues to be challenging. Hence, brain–computer interface technology was used to study the emotions and behavior of people based on brain signals. Emotion analysis is a widely used and robust data mining analysis method. It provides an excellent opportunity to monitor, evaluate, determine, and understand the sentiments of consumers with respect to a product or a service. Yet, a recognition model of emotions in people with visual disabilities has not been evaluated, even though previous studies have already proposed the classification of emotions in people with sensory disabilities using machine learning approaches. Therefore, this study introduces a new salp swarm algorithm with deep recurrent neural network-based textual emotion analysis (SSADRNN-TEA) technique for disabled persons. The major intention of the SSADRNN-TEA technique was to focus on the detection and classification of emotions that exist in social media content. In this work, the SSADRNN-TEA technique undergoes preprocessing to make the input data compatible with the latter stages of processing and BERT word embedding process is applied. Moreover, deep recurrent neural network (DRNN) model is exploited. Finally, SSA is exploited for the optimal adjustment of the DRNN hyperparameters. A widespread experiment is involved in simulating the real-time performance of the SSADRNN-TEA method. The experimental values revealed the improved performance of the SSADRNN-TEA technique in terms of several evaluation metrics." @default.
- W4386792711 created "2023-09-16" @default.
- W4386792711 creator A5021639521 @default.
- W4386792711 creator A5027500267 @default.
- W4386792711 creator A5035640144 @default.
- W4386792711 date "2023-01-01" @default.
- W4386792711 modified "2023-09-30" @default.
- W4386792711 title "Textual Emotion Analysis-based Disabled People Talking Using Improved Metaheuristics with Deep Learning Techniques for Intelligent Systems" @default.
- W4386792711 cites W2941193813 @default.
- W4386792711 cites W2952367469 @default.
- W4386792711 cites W3034176179 @default.
- W4386792711 cites W3036336243 @default.
- W4386792711 cites W3038402194 @default.
- W4386792711 cites W3094290105 @default.
- W4386792711 cites W3206749614 @default.
- W4386792711 cites W4210532528 @default.
- W4386792711 cites W4296525076 @default.
- W4386792711 cites W4297347660 @default.
- W4386792711 cites W4319082028 @default.
- W4386792711 cites W4324098201 @default.
- W4386792711 cites W4376274887 @default.
- W4386792711 doi "https://doi.org/10.57197/jdr-2023-0034" @default.
- W4386792711 hasPublicationYear "2023" @default.
- W4386792711 type Work @default.
- W4386792711 citedByCount "0" @default.
- W4386792711 crossrefType "journal-article" @default.
- W4386792711 hasAuthorship W4386792711A5021639521 @default.
- W4386792711 hasAuthorship W4386792711A5027500267 @default.
- W4386792711 hasAuthorship W4386792711A5035640144 @default.
- W4386792711 hasBestOaLocation W43867927111 @default.
- W4386792711 hasConcept C108583219 @default.
- W4386792711 hasConcept C119857082 @default.
- W4386792711 hasConcept C154945302 @default.
- W4386792711 hasConcept C34736171 @default.
- W4386792711 hasConcept C41008148 @default.
- W4386792711 hasConcept C50644808 @default.
- W4386792711 hasConcept C66402592 @default.
- W4386792711 hasConceptScore W4386792711C108583219 @default.
- W4386792711 hasConceptScore W4386792711C119857082 @default.
- W4386792711 hasConceptScore W4386792711C154945302 @default.
- W4386792711 hasConceptScore W4386792711C34736171 @default.
- W4386792711 hasConceptScore W4386792711C41008148 @default.
- W4386792711 hasConceptScore W4386792711C50644808 @default.
- W4386792711 hasConceptScore W4386792711C66402592 @default.
- W4386792711 hasIssue "3" @default.
- W4386792711 hasLocation W43867927111 @default.
- W4386792711 hasOpenAccess W4386792711 @default.
- W4386792711 hasPrimaryLocation W43867927111 @default.
- W4386792711 hasRelatedWork W3080191145 @default.
- W4386792711 hasRelatedWork W3192794374 @default.
- W4386792711 hasRelatedWork W4223943233 @default.
- W4386792711 hasRelatedWork W4225161397 @default.
- W4386792711 hasRelatedWork W4312200629 @default.
- W4386792711 hasRelatedWork W4313289316 @default.
- W4386792711 hasRelatedWork W4360585206 @default.
- W4386792711 hasRelatedWork W4364306694 @default.
- W4386792711 hasRelatedWork W4380075502 @default.
- W4386792711 hasRelatedWork W4380086463 @default.
- W4386792711 hasVolume "2" @default.
- W4386792711 isParatext "false" @default.
- W4386792711 isRetracted "false" @default.
- W4386792711 workType "article" @default.