Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386793932> ?p ?o ?g. }
- W4386793932 abstract "Efficient assessment of the blood-brain barrier (BBB) penetration ability of a drug compound is one of the major hurdles in central nervous system drug discovery since experimental methods are costly and time-consuming. To advance and elevate the success rate of neurotherapeutic drug discovery, it is essential to develop an accurate computational quantitative model to determine the absolute logBB value (a logarithmic ratio of the concentration of a drug in the brain to its concentration in the blood) of a drug candidate.Here, we developed a quantitative model (LogBB_Pred) capable of predicting a logBB value of a query compound. The model achieved an R2 of 0.61 on an independent test dataset and outperformed other publicly available quantitative models. When compared with the available qualitative (classification) models that only classified whether a compound is BBB-permeable or not, our model achieved the same accuracy (0.85) with the best qualitative model and far-outperformed other qualitative models (accuracies between 0.64 and 0.70). For further evaluation, our model, quantitative models, and the qualitative models were evaluated on a real-world central nervous system drug screening library. Our model showed an accuracy of 0.97 while the other models showed an accuracy in the range of 0.29-0.83. Consequently, our model can accurately classify BBB-permeable compounds as well as predict the absolute logBB values of drug candidates.Web server is freely available on the web at http://ssbio.cau.ac.kr/software/logbb_pred/. The data used in this study are available to download at http://ssbio.cau.ac.kr/software/logbb_pred/dataset.zip." @default.
- W4386793932 created "2023-09-16" @default.
- W4386793932 creator A5004985840 @default.
- W4386793932 creator A5007703910 @default.
- W4386793932 creator A5035280018 @default.
- W4386793932 creator A5040291964 @default.
- W4386793932 creator A5045191450 @default.
- W4386793932 creator A5055522625 @default.
- W4386793932 creator A5075373332 @default.
- W4386793932 creator A5080395613 @default.
- W4386793932 creator A5081482117 @default.
- W4386793932 creator A5089698146 @default.
- W4386793932 date "2023-09-15" @default.
- W4386793932 modified "2023-10-11" @default.
- W4386793932 title "A machine learning-based quantitative model (LogBB_Pred) to predict the blood-brain barrier permeability (logBB value) of drug compounds" @default.
- W4386793932 cites W1520286824 @default.
- W4386793932 cites W1678356000 @default.
- W4386793932 cites W1975147762 @default.
- W4386793932 cites W1980019773 @default.
- W4386793932 cites W1984360588 @default.
- W4386793932 cites W1988195734 @default.
- W4386793932 cites W1996950868 @default.
- W4386793932 cites W1997450720 @default.
- W4386793932 cites W1997493369 @default.
- W4386793932 cites W2002878672 @default.
- W4386793932 cites W2005447377 @default.
- W4386793932 cites W2007070530 @default.
- W4386793932 cites W2013813530 @default.
- W4386793932 cites W2025897779 @default.
- W4386793932 cites W2029382024 @default.
- W4386793932 cites W2035669331 @default.
- W4386793932 cites W2043014029 @default.
- W4386793932 cites W2043380313 @default.
- W4386793932 cites W2053007770 @default.
- W4386793932 cites W2054406104 @default.
- W4386793932 cites W2059705720 @default.
- W4386793932 cites W2065913569 @default.
- W4386793932 cites W2066470751 @default.
- W4386793932 cites W2072434736 @default.
- W4386793932 cites W2073639054 @default.
- W4386793932 cites W2074407688 @default.
- W4386793932 cites W2077128382 @default.
- W4386793932 cites W2092238367 @default.
- W4386793932 cites W2095242648 @default.
- W4386793932 cites W2097936772 @default.
- W4386793932 cites W2109355959 @default.
- W4386793932 cites W2120644107 @default.
- W4386793932 cites W2123149027 @default.
- W4386793932 cites W2124470932 @default.
- W4386793932 cites W2136257295 @default.
- W4386793932 cites W2137255856 @default.
- W4386793932 cites W2151697120 @default.
- W4386793932 cites W2154555351 @default.
- W4386793932 cites W2159821105 @default.
- W4386793932 cites W2166592632 @default.
- W4386793932 cites W2327035729 @default.
- W4386793932 cites W2395331255 @default.
- W4386793932 cites W2395353947 @default.
- W4386793932 cites W2400265934 @default.
- W4386793932 cites W2406943157 @default.
- W4386793932 cites W2409813302 @default.
- W4386793932 cites W2539413229 @default.
- W4386793932 cites W2566440510 @default.
- W4386793932 cites W2589478806 @default.
- W4386793932 cites W2593436234 @default.
- W4386793932 cites W2607281691 @default.
- W4386793932 cites W2791355014 @default.
- W4386793932 cites W2887113605 @default.
- W4386793932 cites W2888936354 @default.
- W4386793932 cites W2897131212 @default.
- W4386793932 cites W2900684900 @default.
- W4386793932 cites W2914870491 @default.
- W4386793932 cites W2940010972 @default.
- W4386793932 cites W2974903653 @default.
- W4386793932 cites W2976332861 @default.
- W4386793932 cites W2994728899 @default.
- W4386793932 cites W3039815589 @default.
- W4386793932 cites W3045004532 @default.
- W4386793932 cites W3095522316 @default.
- W4386793932 cites W3107111486 @default.
- W4386793932 cites W3118343435 @default.
- W4386793932 cites W3139162020 @default.
- W4386793932 cites W3159579291 @default.
- W4386793932 cites W3186792524 @default.
- W4386793932 cites W3209343412 @default.
- W4386793932 cites W4293105114 @default.
- W4386793932 doi "https://doi.org/10.1093/bioinformatics/btad577" @default.
- W4386793932 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37713469" @default.
- W4386793932 hasPublicationYear "2023" @default.
- W4386793932 type Work @default.
- W4386793932 citedByCount "0" @default.
- W4386793932 crossrefType "journal-article" @default.
- W4386793932 hasAuthorship W4386793932A5004985840 @default.
- W4386793932 hasAuthorship W4386793932A5007703910 @default.
- W4386793932 hasAuthorship W4386793932A5035280018 @default.
- W4386793932 hasAuthorship W4386793932A5040291964 @default.
- W4386793932 hasAuthorship W4386793932A5045191450 @default.
- W4386793932 hasAuthorship W4386793932A5055522625 @default.
- W4386793932 hasAuthorship W4386793932A5075373332 @default.
- W4386793932 hasAuthorship W4386793932A5080395613 @default.