Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386794103> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4386794103 abstract "Sleep, a fundamental physiological process, occupies a significant portion of our lives. Accurate classification of sleep stages serves as a crucial tool for evaluating sleep quality and identifying probable sleep disorders. Our work introduces a novel methodology that utilizes a SE-Resnet-Bi-LSTM architecture to classify sleep into five separate stages. The classification process is based on the analysis of single-channel electroencephalograms (EEGs). The suggested framework consists of two fundamental elements: a feature extractor that utilizes SE-ResNet, and a temporal context encoder that uses stacks of Bi-LSTM units. The effectiveness of our approach is substantiated by thorough assessments conducted on three different datasets, namely SleepEDF-20, SleepEDF-78, and SHHS. The proposed methodology achieves significant model performance, with Macro-F1 scores of 82.5, 78.9, and 81.9 for the respective datasets. We employ 1D-GradCAM visualization as a methodology to elucidate the decision-making process inherent in our model in the realm of sleep stage classification. This visualization method not only provides valuable insights into the model's classification rationale but also aligns its outcomes with the annotations made by sleep experts. One notable feature of our research lies in the incorporation of an efficient training approach, which adeptly upholds the model's resilience in terms of performance. The experimental evaluations provide a comprehensive evaluation of the effectiveness of our proposed model in comparison to the existing approaches, highlighting its potential for practical applications." @default.
- W4386794103 created "2023-09-16" @default.
- W4386794103 creator A5005446354 @default.
- W4386794103 creator A5023718253 @default.
- W4386794103 creator A5063470334 @default.
- W4386794103 creator A5076868621 @default.
- W4386794103 creator A5088600971 @default.
- W4386794103 date "2023-09-10" @default.
- W4386794103 modified "2023-10-03" @default.
- W4386794103 title "Data-efficient Deep Learning Approach for Single-Channel EEG-Based Sleep Stage Classification with Model Interpretability" @default.
- W4386794103 doi "https://doi.org/10.48550/arxiv.2309.07156" @default.
- W4386794103 hasPublicationYear "2023" @default.
- W4386794103 type Work @default.
- W4386794103 citedByCount "0" @default.
- W4386794103 crossrefType "posted-content" @default.
- W4386794103 hasAuthorship W4386794103A5005446354 @default.
- W4386794103 hasAuthorship W4386794103A5023718253 @default.
- W4386794103 hasAuthorship W4386794103A5063470334 @default.
- W4386794103 hasAuthorship W4386794103A5076868621 @default.
- W4386794103 hasAuthorship W4386794103A5088600971 @default.
- W4386794103 hasBestOaLocation W43867941031 @default.
- W4386794103 hasConcept C111919701 @default.
- W4386794103 hasConcept C118552586 @default.
- W4386794103 hasConcept C119857082 @default.
- W4386794103 hasConcept C124101348 @default.
- W4386794103 hasConcept C138885662 @default.
- W4386794103 hasConcept C151730666 @default.
- W4386794103 hasConcept C154945302 @default.
- W4386794103 hasConcept C15744967 @default.
- W4386794103 hasConcept C2776401178 @default.
- W4386794103 hasConcept C2778205975 @default.
- W4386794103 hasConcept C2779343474 @default.
- W4386794103 hasConcept C2781067378 @default.
- W4386794103 hasConcept C2910364982 @default.
- W4386794103 hasConcept C36464697 @default.
- W4386794103 hasConcept C41008148 @default.
- W4386794103 hasConcept C41895202 @default.
- W4386794103 hasConcept C522805319 @default.
- W4386794103 hasConcept C86803240 @default.
- W4386794103 hasConcept C98045186 @default.
- W4386794103 hasConceptScore W4386794103C111919701 @default.
- W4386794103 hasConceptScore W4386794103C118552586 @default.
- W4386794103 hasConceptScore W4386794103C119857082 @default.
- W4386794103 hasConceptScore W4386794103C124101348 @default.
- W4386794103 hasConceptScore W4386794103C138885662 @default.
- W4386794103 hasConceptScore W4386794103C151730666 @default.
- W4386794103 hasConceptScore W4386794103C154945302 @default.
- W4386794103 hasConceptScore W4386794103C15744967 @default.
- W4386794103 hasConceptScore W4386794103C2776401178 @default.
- W4386794103 hasConceptScore W4386794103C2778205975 @default.
- W4386794103 hasConceptScore W4386794103C2779343474 @default.
- W4386794103 hasConceptScore W4386794103C2781067378 @default.
- W4386794103 hasConceptScore W4386794103C2910364982 @default.
- W4386794103 hasConceptScore W4386794103C36464697 @default.
- W4386794103 hasConceptScore W4386794103C41008148 @default.
- W4386794103 hasConceptScore W4386794103C41895202 @default.
- W4386794103 hasConceptScore W4386794103C522805319 @default.
- W4386794103 hasConceptScore W4386794103C86803240 @default.
- W4386794103 hasConceptScore W4386794103C98045186 @default.
- W4386794103 hasLocation W43867941031 @default.
- W4386794103 hasOpenAccess W4386794103 @default.
- W4386794103 hasPrimaryLocation W43867941031 @default.
- W4386794103 hasRelatedWork W2912445262 @default.
- W4386794103 hasRelatedWork W3006943036 @default.
- W4386794103 hasRelatedWork W4200511449 @default.
- W4386794103 hasRelatedWork W4206534706 @default.
- W4386794103 hasRelatedWork W4229079080 @default.
- W4386794103 hasRelatedWork W4299487748 @default.
- W4386794103 hasRelatedWork W4382142108 @default.
- W4386794103 hasRelatedWork W4385957992 @default.
- W4386794103 hasRelatedWork W4385965371 @default.
- W4386794103 hasRelatedWork W4386025632 @default.
- W4386794103 isParatext "false" @default.
- W4386794103 isRetracted "false" @default.
- W4386794103 workType "article" @default.