Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386794518> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4386794518 abstract "The circum-galactic medium (CGM) can feasibly be mapped by multiwavelength surveys covering broad swaths of the sky. With multiple large datasets becoming available in the near future, we develop a likelihood-free Deep Learning technique using convolutional neural networks (CNNs) to infer broad-scale physical properties of a galaxy's CGM and its halo mass for the first time. Using CAMELS (Cosmology and Astrophysics with MachinE Learning Simulations) data, including IllustrisTNG, SIMBA, and Astrid models, we train CNNs on Soft X-ray and 21-cm (HI) radio 2D maps to trace hot and cool gas, respectively, around galaxies, groups, and clusters. Our CNNs offer the unique ability to train and test on ''multifield'' datasets comprised of both HI and X-ray maps, providing complementary information about physical CGM properties and improved inferences. Applying eRASS:4 survey limits shows that X-ray is not powerful enough to infer individual halos with masses $log(M_{rm{halo}}/M_{odot}) < 12.5$. The multifield improves the inference for all halo masses. Generally, the CNN trained and tested on Astrid (SIMBA) can most (least) accurately infer CGM properties. Cross-simulation analysis -- training on one galaxy formation model and testing on another -- highlights the challenges of developing CNNs trained on a single model to marginalize over astrophysical uncertainties and perform robust inferences on real data. The next crucial step in improving the resulting inferences on physical CGM properties hinges on our ability to interpret these deep-learning models." @default.
- W4386794518 created "2023-09-16" @default.
- W4386794518 creator A5002061021 @default.
- W4386794518 creator A5008589829 @default.
- W4386794518 creator A5025149406 @default.
- W4386794518 creator A5044467709 @default.
- W4386794518 creator A5076390681 @default.
- W4386794518 date "2023-09-14" @default.
- W4386794518 modified "2023-09-27" @default.
- W4386794518 title "An Observationally Driven Multifield Approach for Probing the Circum-Galactic Medium with Convolutional Neural Networks" @default.
- W4386794518 doi "https://doi.org/10.48550/arxiv.2309.07912" @default.
- W4386794518 hasPublicationYear "2023" @default.
- W4386794518 type Work @default.
- W4386794518 citedByCount "0" @default.
- W4386794518 crossrefType "posted-content" @default.
- W4386794518 hasAuthorship W4386794518A5002061021 @default.
- W4386794518 hasAuthorship W4386794518A5008589829 @default.
- W4386794518 hasAuthorship W4386794518A5025149406 @default.
- W4386794518 hasAuthorship W4386794518A5044467709 @default.
- W4386794518 hasAuthorship W4386794518A5076390681 @default.
- W4386794518 hasBestOaLocation W43867945181 @default.
- W4386794518 hasConcept C108583219 @default.
- W4386794518 hasConcept C119857082 @default.
- W4386794518 hasConcept C121332964 @default.
- W4386794518 hasConcept C153180895 @default.
- W4386794518 hasConcept C154945302 @default.
- W4386794518 hasConcept C174802034 @default.
- W4386794518 hasConcept C184665706 @default.
- W4386794518 hasConcept C2776214188 @default.
- W4386794518 hasConcept C41008148 @default.
- W4386794518 hasConcept C44870925 @default.
- W4386794518 hasConcept C48387981 @default.
- W4386794518 hasConcept C50644808 @default.
- W4386794518 hasConcept C73329638 @default.
- W4386794518 hasConcept C81363708 @default.
- W4386794518 hasConcept C98444146 @default.
- W4386794518 hasConceptScore W4386794518C108583219 @default.
- W4386794518 hasConceptScore W4386794518C119857082 @default.
- W4386794518 hasConceptScore W4386794518C121332964 @default.
- W4386794518 hasConceptScore W4386794518C153180895 @default.
- W4386794518 hasConceptScore W4386794518C154945302 @default.
- W4386794518 hasConceptScore W4386794518C174802034 @default.
- W4386794518 hasConceptScore W4386794518C184665706 @default.
- W4386794518 hasConceptScore W4386794518C2776214188 @default.
- W4386794518 hasConceptScore W4386794518C41008148 @default.
- W4386794518 hasConceptScore W4386794518C44870925 @default.
- W4386794518 hasConceptScore W4386794518C48387981 @default.
- W4386794518 hasConceptScore W4386794518C50644808 @default.
- W4386794518 hasConceptScore W4386794518C73329638 @default.
- W4386794518 hasConceptScore W4386794518C81363708 @default.
- W4386794518 hasConceptScore W4386794518C98444146 @default.
- W4386794518 hasLocation W43867945181 @default.
- W4386794518 hasOpenAccess W4386794518 @default.
- W4386794518 hasPrimaryLocation W43867945181 @default.
- W4386794518 hasRelatedWork W1735977903 @default.
- W4386794518 hasRelatedWork W2025710952 @default.
- W4386794518 hasRelatedWork W2046490506 @default.
- W4386794518 hasRelatedWork W2096865481 @default.
- W4386794518 hasRelatedWork W2329015371 @default.
- W4386794518 hasRelatedWork W3102722036 @default.
- W4386794518 hasRelatedWork W3105569209 @default.
- W4386794518 hasRelatedWork W3122666341 @default.
- W4386794518 hasRelatedWork W4292509016 @default.
- W4386794518 hasRelatedWork W4295065899 @default.
- W4386794518 isParatext "false" @default.
- W4386794518 isRetracted "false" @default.
- W4386794518 workType "article" @default.