Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386797896> ?p ?o ?g. }
- W4386797896 endingPage "101105" @default.
- W4386797896 startingPage "101105" @default.
- W4386797896 abstract "As a common thermomechanical treatment route, “cold rolling and annealing” is widely used for the processing and grain refinement of interstitial-containing high-entropy alloys (HEAs). The interrelationship between the parameters of this process, the content of interstitial elements, and their interactions are outstanding challenges and areas of open discussion. Accordingly, the data-driven machine learning approach is a favorable choice for tuning the microstructure and mechanical properties, which needs to be systematically investigated. In the present work, these subjects were addressed in terms of correlating the thermomechanical processing parameters and chemical composition with the recrystallization and grain growth behaviors, grain size, carbide precipitation, and the resulting tensile yield stress for the model (CrMnFeCoNi)100-xCx HEAs. For this purpose, machine learning models based on adaptive neuro-fuzzy inference system (ANFIS), backpropagation artificial neural network (BP-ANN), and support network machine (SVM), as well as mathematical relationships and equations for the contribution of each strengthening mechanism were proposed and verified by extensive experimental work, which shed light on the design and prediction of the microstructure and properties of HEAs." @default.
- W4386797896 created "2023-09-17" @default.
- W4386797896 creator A5017515266 @default.
- W4386797896 creator A5022447876 @default.
- W4386797896 creator A5031260848 @default.
- W4386797896 creator A5050036885 @default.
- W4386797896 creator A5052657342 @default.
- W4386797896 date "2023-10-01" @default.
- W4386797896 modified "2023-10-06" @default.
- W4386797896 title "Tailoring the microstructure and mechanical properties of (CrMnFeCoNi)100-C high-entropy alloys: Machine learning, experimental validation, and mathematical modeling" @default.
- W4386797896 cites W1974916854 @default.
- W4386797896 cites W2001024202 @default.
- W4386797896 cites W2003975937 @default.
- W4386797896 cites W2007257744 @default.
- W4386797896 cites W2007876110 @default.
- W4386797896 cites W2019207321 @default.
- W4386797896 cites W2024379694 @default.
- W4386797896 cites W2049621164 @default.
- W4386797896 cites W2058026231 @default.
- W4386797896 cites W2058085399 @default.
- W4386797896 cites W2090244344 @default.
- W4386797896 cites W2093322803 @default.
- W4386797896 cites W2148143831 @default.
- W4386797896 cites W2408247608 @default.
- W4386797896 cites W2512448911 @default.
- W4386797896 cites W2521416185 @default.
- W4386797896 cites W2522773815 @default.
- W4386797896 cites W2705635304 @default.
- W4386797896 cites W2736831392 @default.
- W4386797896 cites W2759726945 @default.
- W4386797896 cites W2789390001 @default.
- W4386797896 cites W2797828926 @default.
- W4386797896 cites W2896338172 @default.
- W4386797896 cites W2898966069 @default.
- W4386797896 cites W2904540990 @default.
- W4386797896 cites W2909848402 @default.
- W4386797896 cites W2922127369 @default.
- W4386797896 cites W2930771932 @default.
- W4386797896 cites W2936576845 @default.
- W4386797896 cites W2951539866 @default.
- W4386797896 cites W2953014457 @default.
- W4386797896 cites W2965338255 @default.
- W4386797896 cites W2980517951 @default.
- W4386797896 cites W2988368144 @default.
- W4386797896 cites W2996406504 @default.
- W4386797896 cites W299884152 @default.
- W4386797896 cites W3080184399 @default.
- W4386797896 cites W3091563199 @default.
- W4386797896 cites W3093394451 @default.
- W4386797896 cites W3106517311 @default.
- W4386797896 cites W3120273039 @default.
- W4386797896 cites W3155235031 @default.
- W4386797896 cites W3195411642 @default.
- W4386797896 cites W3199359992 @default.
- W4386797896 cites W3200057471 @default.
- W4386797896 cites W3205631417 @default.
- W4386797896 cites W3207240399 @default.
- W4386797896 cites W3210035924 @default.
- W4386797896 cites W3210469868 @default.
- W4386797896 cites W4200182929 @default.
- W4386797896 cites W4200247147 @default.
- W4386797896 cites W4200418450 @default.
- W4386797896 cites W4206099475 @default.
- W4386797896 cites W4210578964 @default.
- W4386797896 cites W4223611295 @default.
- W4386797896 cites W4224129425 @default.
- W4386797896 cites W4224560380 @default.
- W4386797896 cites W4225729881 @default.
- W4386797896 cites W4281654302 @default.
- W4386797896 cites W4288738555 @default.
- W4386797896 cites W4290615022 @default.
- W4386797896 cites W4293203259 @default.
- W4386797896 cites W4293830155 @default.
- W4386797896 cites W4296126761 @default.
- W4386797896 cites W4296622700 @default.
- W4386797896 cites W4306393537 @default.
- W4386797896 cites W4309420743 @default.
- W4386797896 cites W4318769914 @default.
- W4386797896 cites W4320477253 @default.
- W4386797896 cites W4320888921 @default.
- W4386797896 cites W4321375313 @default.
- W4386797896 cites W4368351426 @default.
- W4386797896 cites W623808825 @default.
- W4386797896 doi "https://doi.org/10.1016/j.cossms.2023.101105" @default.
- W4386797896 hasPublicationYear "2023" @default.
- W4386797896 type Work @default.
- W4386797896 citedByCount "0" @default.
- W4386797896 crossrefType "journal-article" @default.
- W4386797896 hasAuthorship W4386797896A5017515266 @default.
- W4386797896 hasAuthorship W4386797896A5022447876 @default.
- W4386797896 hasAuthorship W4386797896A5031260848 @default.
- W4386797896 hasAuthorship W4386797896A5050036885 @default.
- W4386797896 hasAuthorship W4386797896A5052657342 @default.
- W4386797896 hasConcept C112950240 @default.
- W4386797896 hasConcept C119857082 @default.
- W4386797896 hasConcept C151730666 @default.
- W4386797896 hasConcept C154945302 @default.
- W4386797896 hasConcept C169010117 @default.