Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386797948> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4386797948 endingPage "108956" @default.
- W4386797948 startingPage "108956" @default.
- W4386797948 abstract "Traditional diagnostic models for laser gyroscopes, widely which are commonly employed as high-precision angular velocity sensors in aerospace applications, often encounter challenges in terms of reliability and accuracy. These challenges arise from difficulties in feature extraction, high computational costs, and lengthy training times. In light of these challenges, the present study proposes a new method for diagnosing faults in laser gyroscopes using the Kernel Extreme Learning Machine (KELM). Specifically, the proposed method utilizes Wavelet Packet Decomposition (WPD) to efficiently extract features from the laser gyroscope signal, which are then used as input for our diagnostic model. Furthermore, the KELM model is trained for fault diagnosis. Afterward, we utilize the Improved Dung Beetle Optimizer (IDBO) algorithm to optimize its parameters for improved optimization performance. According to the experimental results, our proposed IDBO-KELM model demonstrates a 3.68% improvement in diagnostic accuracy compared to traditional approaches. Additionally, it offers the advantages of shorter training time and increased precision." @default.
- W4386797948 created "2023-09-17" @default.
- W4386797948 creator A5006332848 @default.
- W4386797948 creator A5017541508 @default.
- W4386797948 creator A5023348031 @default.
- W4386797948 creator A5056590576 @default.
- W4386797948 creator A5063112935 @default.
- W4386797948 date "2023-11-01" @default.
- W4386797948 modified "2023-09-27" @default.
- W4386797948 title "Fault diagnosis research of laser gyroscope based on optimized-kernel extreme learning machine" @default.
- W4386797948 cites W2001335422 @default.
- W4386797948 cites W2026131661 @default.
- W4386797948 cites W2585392941 @default.
- W4386797948 cites W2586703318 @default.
- W4386797948 cites W2895594817 @default.
- W4386797948 cites W2998553334 @default.
- W4386797948 doi "https://doi.org/10.1016/j.compeleceng.2023.108956" @default.
- W4386797948 hasPublicationYear "2023" @default.
- W4386797948 type Work @default.
- W4386797948 citedByCount "0" @default.
- W4386797948 crossrefType "journal-article" @default.
- W4386797948 hasAuthorship W4386797948A5006332848 @default.
- W4386797948 hasAuthorship W4386797948A5017541508 @default.
- W4386797948 hasAuthorship W4386797948A5023348031 @default.
- W4386797948 hasAuthorship W4386797948A5056590576 @default.
- W4386797948 hasAuthorship W4386797948A5063112935 @default.
- W4386797948 hasConcept C114614502 @default.
- W4386797948 hasConcept C121332964 @default.
- W4386797948 hasConcept C127313418 @default.
- W4386797948 hasConcept C127413603 @default.
- W4386797948 hasConcept C146978453 @default.
- W4386797948 hasConcept C153180895 @default.
- W4386797948 hasConcept C154945302 @default.
- W4386797948 hasConcept C158379750 @default.
- W4386797948 hasConcept C158488048 @default.
- W4386797948 hasConcept C163258240 @default.
- W4386797948 hasConcept C165205528 @default.
- W4386797948 hasConcept C175551986 @default.
- W4386797948 hasConcept C187615540 @default.
- W4386797948 hasConcept C2780150128 @default.
- W4386797948 hasConcept C31258907 @default.
- W4386797948 hasConcept C33923547 @default.
- W4386797948 hasConcept C41008148 @default.
- W4386797948 hasConcept C43214815 @default.
- W4386797948 hasConcept C47432892 @default.
- W4386797948 hasConcept C50644808 @default.
- W4386797948 hasConcept C52622490 @default.
- W4386797948 hasConcept C62520636 @default.
- W4386797948 hasConcept C74193536 @default.
- W4386797948 hasConceptScore W4386797948C114614502 @default.
- W4386797948 hasConceptScore W4386797948C121332964 @default.
- W4386797948 hasConceptScore W4386797948C127313418 @default.
- W4386797948 hasConceptScore W4386797948C127413603 @default.
- W4386797948 hasConceptScore W4386797948C146978453 @default.
- W4386797948 hasConceptScore W4386797948C153180895 @default.
- W4386797948 hasConceptScore W4386797948C154945302 @default.
- W4386797948 hasConceptScore W4386797948C158379750 @default.
- W4386797948 hasConceptScore W4386797948C158488048 @default.
- W4386797948 hasConceptScore W4386797948C163258240 @default.
- W4386797948 hasConceptScore W4386797948C165205528 @default.
- W4386797948 hasConceptScore W4386797948C175551986 @default.
- W4386797948 hasConceptScore W4386797948C187615540 @default.
- W4386797948 hasConceptScore W4386797948C2780150128 @default.
- W4386797948 hasConceptScore W4386797948C31258907 @default.
- W4386797948 hasConceptScore W4386797948C33923547 @default.
- W4386797948 hasConceptScore W4386797948C41008148 @default.
- W4386797948 hasConceptScore W4386797948C43214815 @default.
- W4386797948 hasConceptScore W4386797948C47432892 @default.
- W4386797948 hasConceptScore W4386797948C50644808 @default.
- W4386797948 hasConceptScore W4386797948C52622490 @default.
- W4386797948 hasConceptScore W4386797948C62520636 @default.
- W4386797948 hasConceptScore W4386797948C74193536 @default.
- W4386797948 hasLocation W43867979481 @default.
- W4386797948 hasOpenAccess W4386797948 @default.
- W4386797948 hasPrimaryLocation W43867979481 @default.
- W4386797948 hasRelatedWork W1964120219 @default.
- W4386797948 hasRelatedWork W2000165426 @default.
- W4386797948 hasRelatedWork W2114557664 @default.
- W4386797948 hasRelatedWork W2144059113 @default.
- W4386797948 hasRelatedWork W2146076056 @default.
- W4386797948 hasRelatedWork W2385132419 @default.
- W4386797948 hasRelatedWork W2541950815 @default.
- W4386797948 hasRelatedWork W2772780115 @default.
- W4386797948 hasRelatedWork W2811390910 @default.
- W4386797948 hasRelatedWork W3003836766 @default.
- W4386797948 hasVolume "111" @default.
- W4386797948 isParatext "false" @default.
- W4386797948 isRetracted "false" @default.
- W4386797948 workType "article" @default.