Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386799437> ?p ?o ?g. }
- W4386799437 abstract "In this study, machine learning (ML)-assisted regression modeling was conducted to predict the thermal decomposition temperatures and explore the factors that correlate with the thermal stability of energetic materials (EMs). The modeling was performed based on a dataset consisting of 885 various compounds using linear and nonlinear algorithms. The tree-based models established demonstrated acceptable predictive abilities, yielding a low mean absolute error (MAE) of 31°C. By analyzing the dataset through hierarchical classification, this study insightfully identified the factors affecting EMs’ thermal decomposition temperatures, with the overall accuracy improved through targeted modeling. The SHapley Additive exPlanations (SHAP) analysis indicated that descriptors such as BCUT2D, PEOE_VSA, MolLog_P, and TPSA played a significant role, demonstrating that the thermal decomposition process is influenced by multiple factors relating to the composition, electron distribution, chemical bond properties, and substituent type of molecules. Additionally, descriptors such as Carbon_contents and Oxygen_Balance proposed for characterizing EMs showed strong linear correlations with thermal decomposition temperatures. The trends of their SHAP values indicated that the most suitable ranges of Carbon_contents and Oxygen_Balance were 0.2–0.35 and −65 to −55, respectively. Overall, the study shows the potential of ML models for decomposition temperature prediction of EMs and provides insights into the characteristics of molecular descriptors." @default.
- W4386799437 created "2023-09-17" @default.
- W4386799437 creator A5010510537 @default.
- W4386799437 creator A5013763694 @default.
- W4386799437 creator A5056248574 @default.
- W4386799437 creator A5062172104 @default.
- W4386799437 creator A5062311775 @default.
- W4386799437 creator A5070347193 @default.
- W4386799437 creator A5078704875 @default.
- W4386799437 date "2023-09-01" @default.
- W4386799437 modified "2023-10-17" @default.
- W4386799437 title "Machine learning-assisted quantitative prediction of thermal decomposition temperatures of energetic materials and their thermal stability analysis" @default.
- W4386799437 cites W1846111257 @default.
- W4386799437 cites W1964717931 @default.
- W4386799437 cites W1983538742 @default.
- W4386799437 cites W1988790447 @default.
- W4386799437 cites W1995775672 @default.
- W4386799437 cites W2001633251 @default.
- W4386799437 cites W2006028730 @default.
- W4386799437 cites W2011307049 @default.
- W4386799437 cites W2050677790 @default.
- W4386799437 cites W2056132907 @default.
- W4386799437 cites W2067082278 @default.
- W4386799437 cites W2234272136 @default.
- W4386799437 cites W2483313790 @default.
- W4386799437 cites W2491609880 @default.
- W4386799437 cites W2537336510 @default.
- W4386799437 cites W2543401353 @default.
- W4386799437 cites W2550560842 @default.
- W4386799437 cites W2601114176 @default.
- W4386799437 cites W2769360905 @default.
- W4386799437 cites W2772412257 @default.
- W4386799437 cites W2791905745 @default.
- W4386799437 cites W2911964244 @default.
- W4386799437 cites W2913352680 @default.
- W4386799437 cites W2921824951 @default.
- W4386799437 cites W2923610432 @default.
- W4386799437 cites W2964279629 @default.
- W4386799437 cites W2997720453 @default.
- W4386799437 cites W3097609850 @default.
- W4386799437 cites W3104255923 @default.
- W4386799437 cites W3135739046 @default.
- W4386799437 cites W3137054949 @default.
- W4386799437 cites W3159234754 @default.
- W4386799437 cites W3184969049 @default.
- W4386799437 cites W327030905 @default.
- W4386799437 cites W4226210648 @default.
- W4386799437 cites W4283373028 @default.
- W4386799437 cites W4292411804 @default.
- W4386799437 cites W4312050425 @default.
- W4386799437 cites W4313593212 @default.
- W4386799437 cites W4321604806 @default.
- W4386799437 cites W4378469403 @default.
- W4386799437 doi "https://doi.org/10.1016/j.enmf.2023.09.004" @default.
- W4386799437 hasPublicationYear "2023" @default.
- W4386799437 type Work @default.
- W4386799437 citedByCount "0" @default.
- W4386799437 crossrefType "journal-article" @default.
- W4386799437 hasAuthorship W4386799437A5010510537 @default.
- W4386799437 hasAuthorship W4386799437A5013763694 @default.
- W4386799437 hasAuthorship W4386799437A5056248574 @default.
- W4386799437 hasAuthorship W4386799437A5062172104 @default.
- W4386799437 hasAuthorship W4386799437A5062311775 @default.
- W4386799437 hasAuthorship W4386799437A5070347193 @default.
- W4386799437 hasAuthorship W4386799437A5078704875 @default.
- W4386799437 hasBestOaLocation W43867994371 @default.
- W4386799437 hasConcept C105795698 @default.
- W4386799437 hasConcept C112972136 @default.
- W4386799437 hasConcept C119857082 @default.
- W4386799437 hasConcept C121332964 @default.
- W4386799437 hasConcept C124681953 @default.
- W4386799437 hasConcept C139945424 @default.
- W4386799437 hasConcept C160434732 @default.
- W4386799437 hasConcept C164126121 @default.
- W4386799437 hasConcept C164923092 @default.
- W4386799437 hasConcept C178790620 @default.
- W4386799437 hasConcept C185592680 @default.
- W4386799437 hasConcept C186060115 @default.
- W4386799437 hasConcept C188154048 @default.
- W4386799437 hasConcept C192562407 @default.
- W4386799437 hasConcept C204530211 @default.
- W4386799437 hasConcept C2778689049 @default.
- W4386799437 hasConcept C33923547 @default.
- W4386799437 hasConcept C41008148 @default.
- W4386799437 hasConcept C45804977 @default.
- W4386799437 hasConcept C48921125 @default.
- W4386799437 hasConcept C59061564 @default.
- W4386799437 hasConcept C86803240 @default.
- W4386799437 hasConcept C97355855 @default.
- W4386799437 hasConceptScore W4386799437C105795698 @default.
- W4386799437 hasConceptScore W4386799437C112972136 @default.
- W4386799437 hasConceptScore W4386799437C119857082 @default.
- W4386799437 hasConceptScore W4386799437C121332964 @default.
- W4386799437 hasConceptScore W4386799437C124681953 @default.
- W4386799437 hasConceptScore W4386799437C139945424 @default.
- W4386799437 hasConceptScore W4386799437C160434732 @default.
- W4386799437 hasConceptScore W4386799437C164126121 @default.
- W4386799437 hasConceptScore W4386799437C164923092 @default.
- W4386799437 hasConceptScore W4386799437C178790620 @default.
- W4386799437 hasConceptScore W4386799437C185592680 @default.