Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386799887> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4386799887 endingPage "121590" @default.
- W4386799887 startingPage "121590" @default.
- W4386799887 abstract "Magnetic resonance imaging (MRI) is one of the most significant modalities in medical imaging. It suffers from rather lengthy acquisition times, which lead to prolonged patient restriction, patient discomfort, and imaging artifacts. Hence, satisfactory MRI reconstruction from undersampled data sequences constitutes an important research problem. With the advances in deep learning (DL), a plethora of new models have been proposed to solve the MRI reconstruction problem using deep networks. On the other hand, single image super-resolution (SR) is another well-studied field that benefited from the success of DL, and it has applications in various imaging modalities. SR is the process of recovering a high-resolution image from a low-resolution image. SR models work on low-resolution images to recover missing details. MR image reconstruction on the other hand is a battle to eliminate the aliasing artifacts which originate from data downsampling. The motivation for the proposed work is based on the premise that SR approaches can possibly get adapted to MR image reconstruction. Hence in this study, inspired by the great success of deep SR networks, we customize an architecture introduced in SR setting to MRI reconstruction. This novel approach uses the iterative up and downsampling framework labeled as Iterative Up and Down Network (IUDN) for MRI reconstruction. We design two variants of the proposed network with different number of scale factors. We present extensive simulations for the proposed architecture using multiple k-space undersampling ratios. The simulation results indicate cutting edge MRI reconstruction performance for the proposed models. The networks were trained on fastMRI dataset and tested on both fastMRI and IXI datasets to show the robustness of the method. The proposed models achieved improved results in terms of PSNR and visual quality of the reconstructed image when compared to some recent state-of-the-art solutions for MRI reconstruction." @default.
- W4386799887 created "2023-09-17" @default.
- W4386799887 creator A5007090078 @default.
- W4386799887 creator A5009236771 @default.
- W4386799887 creator A5042082747 @default.
- W4386799887 creator A5047214353 @default.
- W4386799887 date "2024-03-01" @default.
- W4386799887 modified "2023-10-17" @default.
- W4386799887 title "MR image reconstruction using iterative up and downsampling network" @default.
- W4386799887 cites W1975154678 @default.
- W4386799887 cites W1985806826 @default.
- W4386799887 cites W2000231352 @default.
- W4386799887 cites W2016482162 @default.
- W4386799887 cites W2029816571 @default.
- W4386799887 cites W2094058787 @default.
- W4386799887 cites W2112796928 @default.
- W4386799887 cites W2117649283 @default.
- W4386799887 cites W2147800946 @default.
- W4386799887 cites W2183182206 @default.
- W4386799887 cites W2304034118 @default.
- W4386799887 cites W2412782625 @default.
- W4386799887 cites W2464551400 @default.
- W4386799887 cites W2508457857 @default.
- W4386799887 cites W2594014149 @default.
- W4386799887 cites W2611467245 @default.
- W4386799887 cites W2621235041 @default.
- W4386799887 cites W2795380527 @default.
- W4386799887 cites W2804263814 @default.
- W4386799887 cites W2883939028 @default.
- W4386799887 cites W2889242407 @default.
- W4386799887 cites W2891437428 @default.
- W4386799887 cites W2919115771 @default.
- W4386799887 cites W2963182372 @default.
- W4386799887 cites W2963682501 @default.
- W4386799887 cites W2975754168 @default.
- W4386799887 cites W3001319253 @default.
- W4386799887 cites W3013529009 @default.
- W4386799887 cites W3040726448 @default.
- W4386799887 cites W3134103558 @default.
- W4386799887 cites W3162980553 @default.
- W4386799887 cites W3197793436 @default.
- W4386799887 cites W3214596213 @default.
- W4386799887 cites W4205947740 @default.
- W4386799887 doi "https://doi.org/10.1016/j.eswa.2023.121590" @default.
- W4386799887 hasPublicationYear "2024" @default.
- W4386799887 type Work @default.
- W4386799887 citedByCount "0" @default.
- W4386799887 crossrefType "journal-article" @default.
- W4386799887 hasAuthorship W4386799887A5007090078 @default.
- W4386799887 hasAuthorship W4386799887A5009236771 @default.
- W4386799887 hasAuthorship W4386799887A5042082747 @default.
- W4386799887 hasAuthorship W4386799887A5047214353 @default.
- W4386799887 hasConcept C108583219 @default.
- W4386799887 hasConcept C110384440 @default.
- W4386799887 hasConcept C115961682 @default.
- W4386799887 hasConcept C136536468 @default.
- W4386799887 hasConcept C141379421 @default.
- W4386799887 hasConcept C154945302 @default.
- W4386799887 hasConcept C205372480 @default.
- W4386799887 hasConcept C31972630 @default.
- W4386799887 hasConcept C4069607 @default.
- W4386799887 hasConcept C41008148 @default.
- W4386799887 hasConceptScore W4386799887C108583219 @default.
- W4386799887 hasConceptScore W4386799887C110384440 @default.
- W4386799887 hasConceptScore W4386799887C115961682 @default.
- W4386799887 hasConceptScore W4386799887C136536468 @default.
- W4386799887 hasConceptScore W4386799887C141379421 @default.
- W4386799887 hasConceptScore W4386799887C154945302 @default.
- W4386799887 hasConceptScore W4386799887C205372480 @default.
- W4386799887 hasConceptScore W4386799887C31972630 @default.
- W4386799887 hasConceptScore W4386799887C4069607 @default.
- W4386799887 hasConceptScore W4386799887C41008148 @default.
- W4386799887 hasFunder F4320322626 @default.
- W4386799887 hasLocation W43867998871 @default.
- W4386799887 hasOpenAccess W4386799887 @default.
- W4386799887 hasPrimaryLocation W43867998871 @default.
- W4386799887 hasRelatedWork W1986862998 @default.
- W4386799887 hasRelatedWork W2134122233 @default.
- W4386799887 hasRelatedWork W2168668658 @default.
- W4386799887 hasRelatedWork W2887505908 @default.
- W4386799887 hasRelatedWork W3091976719 @default.
- W4386799887 hasRelatedWork W3214931932 @default.
- W4386799887 hasRelatedWork W4225933188 @default.
- W4386799887 hasRelatedWork W4230961646 @default.
- W4386799887 hasRelatedWork W4386793446 @default.
- W4386799887 hasRelatedWork W4386799887 @default.
- W4386799887 hasVolume "237" @default.
- W4386799887 isParatext "false" @default.
- W4386799887 isRetracted "false" @default.
- W4386799887 workType "article" @default.