Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386801263> ?p ?o ?g. }
- W4386801263 abstract "Abstract Background A direct consequence of global warming, and strongly correlated with poor physical and mental health, food insecurity is a rising global concern associated with low dietary intake. The Coronavirus pandemic has further aggravated food insecurity among vulnerable communities, and thus has sparked the global conversation of equal food access, food distribution, and improvement of food support programs. This research was designed to identify the key features associated with food insecurity during the COVID-19 pandemic using Machine learning techniques. Seven machine learning algorithms were used in the model, which used a dataset of 32 features. The model was designed to predict food insecurity across ten Arab countries in the Gulf and Mediterranean regions. A total of 13,443 participants were extracted from the international Corona Cooking Survey conducted by 38 different countries during the COVID -19 pandemic. Results The findings indicate that Jordanian, Palestinian, Lebanese, and Saudi Arabian respondents reported the highest rates of food insecurity in the region (15.4%, 13.7%, 13.7% and 11.3% respectively). On the other hand, Oman and Bahrain reported the lowest rates (5.4% and 5.5% respectively). Our model obtained accuracy levels of 70%-82% in all algorithms. Gradient Boosting and Random Forest techniques had the highest performance levels in predicting food insecurity (82% and 80% respectively). Place of residence, age, financial instability, difficulties in accessing food, and depression were found to be the most relevant features associated with food insecurity. Conclusions The ML algorithms seem to be an effective method in early detection and prediction of food insecurity and can profoundly aid policymaking. The integration of ML approaches in public health strategies could potentially improve the development of targeted and effective interventions to combat food insecurity in these regions and globally." @default.
- W4386801263 created "2023-09-17" @default.
- W4386801263 creator A5005563441 @default.
- W4386801263 creator A5007844684 @default.
- W4386801263 creator A5009666570 @default.
- W4386801263 creator A5011228840 @default.
- W4386801263 creator A5011662571 @default.
- W4386801263 creator A5014207338 @default.
- W4386801263 creator A5015877073 @default.
- W4386801263 creator A5016760965 @default.
- W4386801263 creator A5017950301 @default.
- W4386801263 creator A5021619167 @default.
- W4386801263 creator A5021686514 @default.
- W4386801263 creator A5024278570 @default.
- W4386801263 creator A5027549177 @default.
- W4386801263 creator A5028800885 @default.
- W4386801263 creator A5029354429 @default.
- W4386801263 creator A5030563179 @default.
- W4386801263 creator A5032057046 @default.
- W4386801263 creator A5033310055 @default.
- W4386801263 creator A5034441314 @default.
- W4386801263 creator A5035303918 @default.
- W4386801263 creator A5035617140 @default.
- W4386801263 creator A5036556890 @default.
- W4386801263 creator A5038274301 @default.
- W4386801263 creator A5039259481 @default.
- W4386801263 creator A5041531130 @default.
- W4386801263 creator A5046763946 @default.
- W4386801263 creator A5049120292 @default.
- W4386801263 creator A5049435686 @default.
- W4386801263 creator A5056682096 @default.
- W4386801263 creator A5057527229 @default.
- W4386801263 creator A5058521471 @default.
- W4386801263 creator A5058855679 @default.
- W4386801263 creator A5058939784 @default.
- W4386801263 creator A5060584165 @default.
- W4386801263 creator A5061499994 @default.
- W4386801263 creator A5061532922 @default.
- W4386801263 creator A5062174036 @default.
- W4386801263 creator A5064660672 @default.
- W4386801263 creator A5065912042 @default.
- W4386801263 creator A5068895263 @default.
- W4386801263 creator A5070826233 @default.
- W4386801263 creator A5071499240 @default.
- W4386801263 creator A5074656752 @default.
- W4386801263 creator A5078671726 @default.
- W4386801263 creator A5078857319 @default.
- W4386801263 creator A5082392758 @default.
- W4386801263 creator A5083615825 @default.
- W4386801263 creator A5092887625 @default.
- W4386801263 date "2023-09-16" @default.
- W4386801263 modified "2023-10-16" @default.
- W4386801263 title "Machine learning techniques for the identification of risk factors associated with food insecurity among adults in Arab countries during the COVID-19 pandemic" @default.
- W4386801263 cites W1509998372 @default.
- W4386801263 cites W1966334684 @default.
- W4386801263 cites W1968494495 @default.
- W4386801263 cites W2018681337 @default.
- W4386801263 cites W2110106130 @default.
- W4386801263 cites W2118056767 @default.
- W4386801263 cites W2122825672 @default.
- W4386801263 cites W2122870271 @default.
- W4386801263 cites W2124190249 @default.
- W4386801263 cites W2275106090 @default.
- W4386801263 cites W2333438761 @default.
- W4386801263 cites W2592201256 @default.
- W4386801263 cites W2626373092 @default.
- W4386801263 cites W2794802638 @default.
- W4386801263 cites W2886553374 @default.
- W4386801263 cites W2898474417 @default.
- W4386801263 cites W2903869220 @default.
- W4386801263 cites W2908762575 @default.
- W4386801263 cites W2912581524 @default.
- W4386801263 cites W2921455922 @default.
- W4386801263 cites W2949588575 @default.
- W4386801263 cites W3003951157 @default.
- W4386801263 cites W3004879822 @default.
- W4386801263 cites W3021083477 @default.
- W4386801263 cites W3043604970 @default.
- W4386801263 cites W3084074548 @default.
- W4386801263 cites W3093350841 @default.
- W4386801263 cites W3093527943 @default.
- W4386801263 cites W3125737366 @default.
- W4386801263 cites W3165573556 @default.
- W4386801263 cites W3167179910 @default.
- W4386801263 cites W3175812218 @default.
- W4386801263 cites W3188035648 @default.
- W4386801263 cites W3197422533 @default.
- W4386801263 cites W4221011366 @default.
- W4386801263 cites W4291247406 @default.
- W4386801263 cites W4296127264 @default.
- W4386801263 cites W4309990494 @default.
- W4386801263 cites W4320063308 @default.
- W4386801263 cites W4321108604 @default.
- W4386801263 cites W4321498657 @default.
- W4386801263 doi "https://doi.org/10.1186/s12889-023-16694-5" @default.
- W4386801263 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37716999" @default.
- W4386801263 hasPublicationYear "2023" @default.
- W4386801263 type Work @default.
- W4386801263 citedByCount "0" @default.
- W4386801263 crossrefType "journal-article" @default.