Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386804562> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4386804562 endingPage "238" @default.
- W4386804562 startingPage "223" @default.
- W4386804562 abstract "Recurrent neural networks (RNNs) have brought a lot of advancements in sequence labeling tasks and sequence data. However, their effectiveness is limited when the observations in the sequence are irregularly sampled, where the observations arrive at irregular time intervals. To address this, continuous time variants of the RNNs were introduced based on neural ordinary differential equations (NODE). They learn a better representation of the data using the continuous transformation of hidden states over time, taking into account the time interval between the observations. However, they are still limited in their capability as they use the discrete transformations and a fixed discrete number of layers (depth) over an input in the sequence to produce the output observation. We intend to address this limitation by proposing RNNs based on differential equations which model continuous transformations over both depth and time to predict an output for a given input in the sequence. Specifically, we propose continuous depth recurrent neural differential equations (CDR-NDE) which generalize RNN models by continuously evolving the hidden states in both the temporal and depth dimensions. CDR-NDE considers two separate differential equations over each of these dimensions and models the evolution in temporal and depth directions alternatively. We also propose the CDR-NDE-heat model based on partial differential equations which treats the computation of hidden states as solving a heat equation over time. We demonstrate the effectiveness of the proposed models by comparing against the state-of-the-art RNN models on real world sequence labeling problems." @default.
- W4386804562 created "2023-09-17" @default.
- W4386804562 creator A5014572700 @default.
- W4386804562 creator A5019469798 @default.
- W4386804562 creator A5080478273 @default.
- W4386804562 date "2023-01-01" @default.
- W4386804562 modified "2023-09-27" @default.
- W4386804562 title "Continuous Depth Recurrent Neural Differential Equations" @default.
- W4386804562 cites W1571050689 @default.
- W4386804562 cites W1991423347 @default.
- W4386804562 cites W2058580716 @default.
- W4386804562 cites W2064675550 @default.
- W4386804562 cites W2131774270 @default.
- W4386804562 cites W2194775991 @default.
- W4386804562 cites W2515728551 @default.
- W4386804562 cites W2774484786 @default.
- W4386804562 cites W2806070179 @default.
- W4386804562 cites W2904551248 @default.
- W4386804562 cites W2964010366 @default.
- W4386804562 cites W2964199361 @default.
- W4386804562 cites W3098011980 @default.
- W4386804562 cites W3120179959 @default.
- W4386804562 cites W4200630780 @default.
- W4386804562 cites W4226086166 @default.
- W4386804562 cites W4292462325 @default.
- W4386804562 cites W4311210915 @default.
- W4386804562 cites W639708223 @default.
- W4386804562 doi "https://doi.org/10.1007/978-3-031-43415-0_14" @default.
- W4386804562 hasPublicationYear "2023" @default.
- W4386804562 type Work @default.
- W4386804562 citedByCount "0" @default.
- W4386804562 crossrefType "book-chapter" @default.
- W4386804562 hasAuthorship W4386804562A5014572700 @default.
- W4386804562 hasAuthorship W4386804562A5019469798 @default.
- W4386804562 hasAuthorship W4386804562A5080478273 @default.
- W4386804562 hasConcept C11413529 @default.
- W4386804562 hasConcept C134306372 @default.
- W4386804562 hasConcept C147168706 @default.
- W4386804562 hasConcept C153180895 @default.
- W4386804562 hasConcept C154945302 @default.
- W4386804562 hasConcept C2778112365 @default.
- W4386804562 hasConcept C33923547 @default.
- W4386804562 hasConcept C41008148 @default.
- W4386804562 hasConcept C50644808 @default.
- W4386804562 hasConcept C51544822 @default.
- W4386804562 hasConcept C54355233 @default.
- W4386804562 hasConcept C78045399 @default.
- W4386804562 hasConcept C86803240 @default.
- W4386804562 hasConcept C93779851 @default.
- W4386804562 hasConceptScore W4386804562C11413529 @default.
- W4386804562 hasConceptScore W4386804562C134306372 @default.
- W4386804562 hasConceptScore W4386804562C147168706 @default.
- W4386804562 hasConceptScore W4386804562C153180895 @default.
- W4386804562 hasConceptScore W4386804562C154945302 @default.
- W4386804562 hasConceptScore W4386804562C2778112365 @default.
- W4386804562 hasConceptScore W4386804562C33923547 @default.
- W4386804562 hasConceptScore W4386804562C41008148 @default.
- W4386804562 hasConceptScore W4386804562C50644808 @default.
- W4386804562 hasConceptScore W4386804562C51544822 @default.
- W4386804562 hasConceptScore W4386804562C54355233 @default.
- W4386804562 hasConceptScore W4386804562C78045399 @default.
- W4386804562 hasConceptScore W4386804562C86803240 @default.
- W4386804562 hasConceptScore W4386804562C93779851 @default.
- W4386804562 hasLocation W43868045621 @default.
- W4386804562 hasOpenAccess W4386804562 @default.
- W4386804562 hasPrimaryLocation W43868045621 @default.
- W4386804562 hasRelatedWork W141673014 @default.
- W4386804562 hasRelatedWork W1975563205 @default.
- W4386804562 hasRelatedWork W1987689558 @default.
- W4386804562 hasRelatedWork W2084967032 @default.
- W4386804562 hasRelatedWork W2093617977 @default.
- W4386804562 hasRelatedWork W2565775547 @default.
- W4386804562 hasRelatedWork W2593379477 @default.
- W4386804562 hasRelatedWork W3095237644 @default.
- W4386804562 hasRelatedWork W3134527216 @default.
- W4386804562 hasRelatedWork W4206417931 @default.
- W4386804562 isParatext "false" @default.
- W4386804562 isRetracted "false" @default.
- W4386804562 workType "book-chapter" @default.