Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386805105> ?p ?o ?g. }
- W4386805105 endingPage "17701" @default.
- W4386805105 startingPage "17672" @default.
- W4386805105 abstract "<abstract> <p>To handle imbalanced datasets in machine learning or deep learning models, some studies suggest sampling techniques to generate virtual examples of minority classes to improve the models' prediction accuracy. However, for kernel-based support vector machines (SVM), some sampling methods suggest generating synthetic examples in an original data space rather than in a high-dimensional feature space. This may be ineffective in improving SVM classification for imbalanced datasets. To address this problem, we propose a novel hybrid sampling technique termed modified mega-trend-diffusion-extreme learning machine (MMTD-ELM) to effectively move the SVM decision boundary toward a region of the majority class. By this movement, the prediction of SVM for minority class examples can be improved. The proposed method combines α-cut fuzzy number method for screening representative examples of majority class and MMTD method for creating new examples of the minority class. Furthermore, we construct a bagging ELM model to monitor the similarity between new examples and original data. In this paper, four datasets are used to test the efficiency of the proposed MMTD-ELM method in imbalanced data prediction. Additionally, we deployed two SVM models to compare prediction performance of the proposed MMTD-ELM method with three state-of-the-art sampling techniques in terms of geometric mean (G-mean), F-measure (F1), index of balanced accuracy (IBA) and area under curve (AUC) metrics. Furthermore, paired t-test is used to elucidate whether the suggested method has statistically significant differences from the other sampling techniques in terms of the four evaluation metrics. The experimental results demonstrated that the proposed method achieves the best average values in terms of G-mean, F1, IBA and AUC. Overall, the suggested MMTD-ELM method outperforms these sampling methods for imbalanced datasets.</p> </abstract>" @default.
- W4386805105 created "2023-09-17" @default.
- W4386805105 creator A5011172653 @default.
- W4386805105 creator A5035303765 @default.
- W4386805105 creator A5039983089 @default.
- W4386805105 creator A5070431402 @default.
- W4386805105 creator A5079643664 @default.
- W4386805105 date "2023-01-01" @default.
- W4386805105 modified "2023-09-27" @default.
- W4386805105 title "Improved support vector machine classification for imbalanced medical datasets by novel hybrid sampling combining modified mega-trend-diffusion and bagging extreme learning machine model" @default.
- W4386805105 cites W1496056137 @default.
- W4386805105 cites W1588282782 @default.
- W4386805105 cites W1754612754 @default.
- W4386805105 cites W1982165141 @default.
- W4386805105 cites W2010354425 @default.
- W4386805105 cites W2111072639 @default.
- W4386805105 cites W2116925234 @default.
- W4386805105 cites W2131046966 @default.
- W4386805105 cites W2146713522 @default.
- W4386805105 cites W2148143831 @default.
- W4386805105 cites W2157825442 @default.
- W4386805105 cites W2490757557 @default.
- W4386805105 cites W2767040509 @default.
- W4386805105 cites W2902551813 @default.
- W4386805105 cites W2964077297 @default.
- W4386805105 cites W2968692091 @default.
- W4386805105 cites W2981005829 @default.
- W4386805105 cites W3000453568 @default.
- W4386805105 cites W3003617865 @default.
- W4386805105 cites W3013099093 @default.
- W4386805105 cites W3087265011 @default.
- W4386805105 cites W3118918119 @default.
- W4386805105 cites W3162357183 @default.
- W4386805105 cites W4200471493 @default.
- W4386805105 cites W4212883601 @default.
- W4386805105 cites W4239510810 @default.
- W4386805105 cites W4285247587 @default.
- W4386805105 cites W4286480257 @default.
- W4386805105 cites W4303858660 @default.
- W4386805105 cites W4311173708 @default.
- W4386805105 cites W4313656526 @default.
- W4386805105 cites W4380324002 @default.
- W4386805105 doi "https://doi.org/10.3934/mbe.2023786" @default.
- W4386805105 hasPublicationYear "2023" @default.
- W4386805105 type Work @default.
- W4386805105 citedByCount "0" @default.
- W4386805105 crossrefType "journal-article" @default.
- W4386805105 hasAuthorship W4386805105A5011172653 @default.
- W4386805105 hasAuthorship W4386805105A5035303765 @default.
- W4386805105 hasAuthorship W4386805105A5039983089 @default.
- W4386805105 hasAuthorship W4386805105A5070431402 @default.
- W4386805105 hasAuthorship W4386805105A5079643664 @default.
- W4386805105 hasBestOaLocation W43868051051 @default.
- W4386805105 hasConcept C106131492 @default.
- W4386805105 hasConcept C114614502 @default.
- W4386805105 hasConcept C119857082 @default.
- W4386805105 hasConcept C12267149 @default.
- W4386805105 hasConcept C124101348 @default.
- W4386805105 hasConcept C138885662 @default.
- W4386805105 hasConcept C140779682 @default.
- W4386805105 hasConcept C153180895 @default.
- W4386805105 hasConcept C154945302 @default.
- W4386805105 hasConcept C197323446 @default.
- W4386805105 hasConcept C2776257435 @default.
- W4386805105 hasConcept C2776401178 @default.
- W4386805105 hasConcept C2780150128 @default.
- W4386805105 hasConcept C31258907 @default.
- W4386805105 hasConcept C31972630 @default.
- W4386805105 hasConcept C33923547 @default.
- W4386805105 hasConcept C41008148 @default.
- W4386805105 hasConcept C41895202 @default.
- W4386805105 hasConcept C42023084 @default.
- W4386805105 hasConcept C50644808 @default.
- W4386805105 hasConcept C74193536 @default.
- W4386805105 hasConceptScore W4386805105C106131492 @default.
- W4386805105 hasConceptScore W4386805105C114614502 @default.
- W4386805105 hasConceptScore W4386805105C119857082 @default.
- W4386805105 hasConceptScore W4386805105C12267149 @default.
- W4386805105 hasConceptScore W4386805105C124101348 @default.
- W4386805105 hasConceptScore W4386805105C138885662 @default.
- W4386805105 hasConceptScore W4386805105C140779682 @default.
- W4386805105 hasConceptScore W4386805105C153180895 @default.
- W4386805105 hasConceptScore W4386805105C154945302 @default.
- W4386805105 hasConceptScore W4386805105C197323446 @default.
- W4386805105 hasConceptScore W4386805105C2776257435 @default.
- W4386805105 hasConceptScore W4386805105C2776401178 @default.
- W4386805105 hasConceptScore W4386805105C2780150128 @default.
- W4386805105 hasConceptScore W4386805105C31258907 @default.
- W4386805105 hasConceptScore W4386805105C31972630 @default.
- W4386805105 hasConceptScore W4386805105C33923547 @default.
- W4386805105 hasConceptScore W4386805105C41008148 @default.
- W4386805105 hasConceptScore W4386805105C41895202 @default.
- W4386805105 hasConceptScore W4386805105C42023084 @default.
- W4386805105 hasConceptScore W4386805105C50644808 @default.
- W4386805105 hasConceptScore W4386805105C74193536 @default.
- W4386805105 hasIssue "10" @default.
- W4386805105 hasLocation W43868051051 @default.
- W4386805105 hasOpenAccess W4386805105 @default.