Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386807687> ?p ?o ?g. }
- W4386807687 endingPage "100021" @default.
- W4386807687 startingPage "100021" @default.
- W4386807687 abstract "This study presented a novel methodology to predict the CO2 absorption enhancement performance of TiO2-Monoethanolamine/Methyl diethanolamine (MEA/MDEA) blended amine nanofluids using back propagation neural network (BPNN) model in artificial neural networks. The absorption enhancement factor of TiO2-MEA/MDEA nanofluid were determined experimentally by a two-step method with various nanoparticle solid contents (0.4-1.4 g/L). The results showed that the enhancement factor was firstly increased and then decreased with the rising nanoparticle solid content, and the extreme point appeared at 0.6 g/L. Based on the experimental data, a relevant empirical formula and a back propagation neural network (BPNN) model were used to estimate the enhancement factor of nanofluid and both exhibited good applicability. Additionally, an optimization model incorporating genetic algorithm, particle swarm algorithm and adaptive learning rate (C-BPNN) was also proposed to estimate the enhancement factor. Compared with the empirical formula and BPNN, C-BPNN exhibited a higher prediction accuracy (all data R2=0.9966) and a faster prediction rate. The weight analysis of key parameters (nanoparticle solid content, concentration of MEA and MDEA) showed that the relative importance of nanoparticle solid content was foremost (42.63%) in the absorption enhancement process. All these results indicate that the neural network can provide a guiding role for the research in the field of nanofluid transfer." @default.
- W4386807687 created "2023-09-17" @default.
- W4386807687 creator A5009988387 @default.
- W4386807687 creator A5012650932 @default.
- W4386807687 creator A5020937742 @default.
- W4386807687 creator A5044248363 @default.
- W4386807687 creator A5073050450 @default.
- W4386807687 date "2023-09-01" @default.
- W4386807687 modified "2023-10-12" @default.
- W4386807687 title "Designing back propagation neural network to predict CO2 mass transfer enhancement factor of TiO2-MEA/MDEA blended amine nanofluids" @default.
- W4386807687 cites W2001074166 @default.
- W4386807687 cites W2009290566 @default.
- W4386807687 cites W2010898227 @default.
- W4386807687 cites W2014860184 @default.
- W4386807687 cites W2017763486 @default.
- W4386807687 cites W2019609756 @default.
- W4386807687 cites W2035746213 @default.
- W4386807687 cites W2045937144 @default.
- W4386807687 cites W2056874289 @default.
- W4386807687 cites W2140046728 @default.
- W4386807687 cites W2294290919 @default.
- W4386807687 cites W2505526174 @default.
- W4386807687 cites W2528341630 @default.
- W4386807687 cites W2547587765 @default.
- W4386807687 cites W2562312418 @default.
- W4386807687 cites W2592647770 @default.
- W4386807687 cites W2607019636 @default.
- W4386807687 cites W2740882992 @default.
- W4386807687 cites W2750961426 @default.
- W4386807687 cites W2792909069 @default.
- W4386807687 cites W2802732370 @default.
- W4386807687 cites W2811093235 @default.
- W4386807687 cites W2897645477 @default.
- W4386807687 cites W2924368046 @default.
- W4386807687 cites W2934965000 @default.
- W4386807687 cites W2955033142 @default.
- W4386807687 cites W2956997803 @default.
- W4386807687 cites W2991235564 @default.
- W4386807687 cites W2995893002 @default.
- W4386807687 cites W3081358487 @default.
- W4386807687 cites W3094086630 @default.
- W4386807687 cites W3119693740 @default.
- W4386807687 cites W3130704784 @default.
- W4386807687 cites W3162737722 @default.
- W4386807687 cites W3210909534 @default.
- W4386807687 cites W3211825780 @default.
- W4386807687 cites W4280641260 @default.
- W4386807687 cites W4304759286 @default.
- W4386807687 cites W4377090557 @default.
- W4386807687 cites W4380988246 @default.
- W4386807687 cites W4381480407 @default.
- W4386807687 doi "https://doi.org/10.1016/j.decarb.2023.100021" @default.
- W4386807687 hasPublicationYear "2023" @default.
- W4386807687 type Work @default.
- W4386807687 citedByCount "0" @default.
- W4386807687 crossrefType "journal-article" @default.
- W4386807687 hasAuthorship W4386807687A5009988387 @default.
- W4386807687 hasAuthorship W4386807687A5012650932 @default.
- W4386807687 hasAuthorship W4386807687A5020937742 @default.
- W4386807687 hasAuthorship W4386807687A5044248363 @default.
- W4386807687 hasAuthorship W4386807687A5073050450 @default.
- W4386807687 hasBestOaLocation W43868076871 @default.
- W4386807687 hasConcept C11413529 @default.
- W4386807687 hasConcept C127413603 @default.
- W4386807687 hasConcept C131779359 @default.
- W4386807687 hasConcept C154945302 @default.
- W4386807687 hasConcept C155672457 @default.
- W4386807687 hasConcept C171250308 @default.
- W4386807687 hasConcept C178790620 @default.
- W4386807687 hasConcept C185592680 @default.
- W4386807687 hasConcept C186060115 @default.
- W4386807687 hasConcept C192562407 @default.
- W4386807687 hasConcept C21946209 @default.
- W4386807687 hasConcept C2777962934 @default.
- W4386807687 hasConcept C41008148 @default.
- W4386807687 hasConcept C42360764 @default.
- W4386807687 hasConcept C43617362 @default.
- W4386807687 hasConcept C50644808 @default.
- W4386807687 hasConcept C51038369 @default.
- W4386807687 hasConcept C85617194 @default.
- W4386807687 hasConcept C86803240 @default.
- W4386807687 hasConceptScore W4386807687C11413529 @default.
- W4386807687 hasConceptScore W4386807687C127413603 @default.
- W4386807687 hasConceptScore W4386807687C131779359 @default.
- W4386807687 hasConceptScore W4386807687C154945302 @default.
- W4386807687 hasConceptScore W4386807687C155672457 @default.
- W4386807687 hasConceptScore W4386807687C171250308 @default.
- W4386807687 hasConceptScore W4386807687C178790620 @default.
- W4386807687 hasConceptScore W4386807687C185592680 @default.
- W4386807687 hasConceptScore W4386807687C186060115 @default.
- W4386807687 hasConceptScore W4386807687C192562407 @default.
- W4386807687 hasConceptScore W4386807687C21946209 @default.
- W4386807687 hasConceptScore W4386807687C2777962934 @default.
- W4386807687 hasConceptScore W4386807687C41008148 @default.
- W4386807687 hasConceptScore W4386807687C42360764 @default.
- W4386807687 hasConceptScore W4386807687C43617362 @default.
- W4386807687 hasConceptScore W4386807687C50644808 @default.
- W4386807687 hasConceptScore W4386807687C51038369 @default.