Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386813612> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4386813612 endingPage "104701" @default.
- W4386813612 startingPage "104701" @default.
- W4386813612 abstract "Aesthetic improvement is a significant concern in dental therapy. While orthodontic treatment primarily targets hard tissue, the impact on soft tissue and the extent of these changes remains largely empirical. This study aims to unveil the intricate relationship between facial soft tissue and skeletal types using artificial intelligence (AI) analysis. First, we collected a dataset of 1044 3-side-photographs and categorized them based on cephalometric measurements. After pre-processing and data augmentation, samples were fed to two independent models (Sfa, Res model) for training and testing. After validating that the Sfa model could recognize the skeletal types based merely on photographs, Grad-CAM algorithm was then utilized for model decipherment. Verification of the vital traits were carried out by facial adjustment simulation. The Sfa model demonstrated superior accuracy (0.9293) in identifying skeletal types based solely on soft tissue, compared to the Res model (0.8395) and even trained orthodontists (0.764), testifying our hypothesis that AI could be more capable of processing imperceptible cues compared to mankind. Intriguingly, Grad-CAM revealed that cheek volume, forehead, chin and nasolabial traits could be representative features of each type, exceeding the traditional knowledge which merely concerns mandible and chin. By constructing a deep learning model as a classifier and then decipher it with Grad-CAM, we revealed the subtle and unnoticed cues associating skeletal and soft tissue, as well as provided a novel approach that could aid practitioners in devising tailored treatment plans for enhanced aesthetic outcomes. The proposed AI methods offer valuable assistance to practitioners in identifying uncoordinated facial traits that may detract from a patient's attractiveness. By incorporating these insights into customized treatment plans, dental therapy can maximize aesthetic benefits for individual patient." @default.
- W4386813612 created "2023-09-18" @default.
- W4386813612 creator A5002117195 @default.
- W4386813612 creator A5009661816 @default.
- W4386813612 creator A5026384434 @default.
- W4386813612 creator A5035239799 @default.
- W4386813612 creator A5041295808 @default.
- W4386813612 creator A5043240030 @default.
- W4386813612 date "2023-11-01" @default.
- W4386813612 modified "2023-09-29" @default.
- W4386813612 title "Revealing the representative facial traits of different sagittal skeletal types: decipher what artificial intelligence can see by Grad-CAM" @default.
- W4386813612 cites W1948923808 @default.
- W4386813612 cites W1986362549 @default.
- W4386813612 cites W1987137959 @default.
- W4386813612 cites W1992246267 @default.
- W4386813612 cites W2044555824 @default.
- W4386813612 cites W2069364564 @default.
- W4386813612 cites W2080836500 @default.
- W4386813612 cites W2097136293 @default.
- W4386813612 cites W2108219041 @default.
- W4386813612 cites W2130627068 @default.
- W4386813612 cites W2148619582 @default.
- W4386813612 cites W2157627506 @default.
- W4386813612 cites W2166424597 @default.
- W4386813612 cites W2195078138 @default.
- W4386813612 cites W2760217884 @default.
- W4386813612 cites W2796278473 @default.
- W4386813612 cites W2921003381 @default.
- W4386813612 cites W2990865467 @default.
- W4386813612 cites W3001058810 @default.
- W4386813612 cites W3097197838 @default.
- W4386813612 cites W3101625015 @default.
- W4386813612 cites W3102564565 @default.
- W4386813612 cites W3132764260 @default.
- W4386813612 cites W3137176729 @default.
- W4386813612 cites W3159047911 @default.
- W4386813612 cites W3188777721 @default.
- W4386813612 cites W3201345607 @default.
- W4386813612 cites W4212785386 @default.
- W4386813612 cites W4220839686 @default.
- W4386813612 cites W4224316937 @default.
- W4386813612 cites W4235878726 @default.
- W4386813612 doi "https://doi.org/10.1016/j.jdent.2023.104701" @default.
- W4386813612 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37717687" @default.
- W4386813612 hasPublicationYear "2023" @default.
- W4386813612 type Work @default.
- W4386813612 citedByCount "0" @default.
- W4386813612 crossrefType "journal-article" @default.
- W4386813612 hasAuthorship W4386813612A5002117195 @default.
- W4386813612 hasAuthorship W4386813612A5009661816 @default.
- W4386813612 hasAuthorship W4386813612A5026384434 @default.
- W4386813612 hasAuthorship W4386813612A5035239799 @default.
- W4386813612 hasAuthorship W4386813612A5041295808 @default.
- W4386813612 hasAuthorship W4386813612A5043240030 @default.
- W4386813612 hasConcept C105702510 @default.
- W4386813612 hasConcept C136948725 @default.
- W4386813612 hasConcept C142724271 @default.
- W4386813612 hasConcept C153180895 @default.
- W4386813612 hasConcept C154945302 @default.
- W4386813612 hasConcept C164614171 @default.
- W4386813612 hasConcept C2779881321 @default.
- W4386813612 hasConcept C2780446394 @default.
- W4386813612 hasConcept C29694066 @default.
- W4386813612 hasConcept C41008148 @default.
- W4386813612 hasConcept C60644358 @default.
- W4386813612 hasConcept C71924100 @default.
- W4386813612 hasConcept C86803240 @default.
- W4386813612 hasConceptScore W4386813612C105702510 @default.
- W4386813612 hasConceptScore W4386813612C136948725 @default.
- W4386813612 hasConceptScore W4386813612C142724271 @default.
- W4386813612 hasConceptScore W4386813612C153180895 @default.
- W4386813612 hasConceptScore W4386813612C154945302 @default.
- W4386813612 hasConceptScore W4386813612C164614171 @default.
- W4386813612 hasConceptScore W4386813612C2779881321 @default.
- W4386813612 hasConceptScore W4386813612C2780446394 @default.
- W4386813612 hasConceptScore W4386813612C29694066 @default.
- W4386813612 hasConceptScore W4386813612C41008148 @default.
- W4386813612 hasConceptScore W4386813612C60644358 @default.
- W4386813612 hasConceptScore W4386813612C71924100 @default.
- W4386813612 hasConceptScore W4386813612C86803240 @default.
- W4386813612 hasLocation W43868136121 @default.
- W4386813612 hasLocation W43868136122 @default.
- W4386813612 hasOpenAccess W4386813612 @default.
- W4386813612 hasPrimaryLocation W43868136121 @default.
- W4386813612 hasRelatedWork W2050820450 @default.
- W4386813612 hasRelatedWork W2083565850 @default.
- W4386813612 hasRelatedWork W2103026772 @default.
- W4386813612 hasRelatedWork W2140835565 @default.
- W4386813612 hasRelatedWork W2391014829 @default.
- W4386813612 hasRelatedWork W2413140175 @default.
- W4386813612 hasRelatedWork W2414377627 @default.
- W4386813612 hasRelatedWork W2419240454 @default.
- W4386813612 hasRelatedWork W2928405993 @default.
- W4386813612 hasRelatedWork W3156588538 @default.
- W4386813612 hasVolume "138" @default.
- W4386813612 isParatext "false" @default.
- W4386813612 isRetracted "false" @default.
- W4386813612 workType "article" @default.