Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386814312> ?p ?o ?g. }
- W4386814312 endingPage "1881" @default.
- W4386814312 startingPage "1881" @default.
- W4386814312 abstract "Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) have gained improved results in remote sensing image data classification. Multispectral image classification can benefit from the rich spectral information extracted by these models for land cover classification. This paper proposes a classification model called a hierarchical convolutional recurrent neural network (HCRNN) to combine the CNN and RNN modules for pixel-level classification of multispectral remote sensing images. In the HCRNN model, the original 13-band information from Sentinel-2 is transformed into a 1D multispectral sequence using a fully connected layer. It is then reshaped into a 3D multispectral feature matrix. The 2D-CNN features are extracted and used as inputs to the corresponding hierarchical RNN. The feature information at each level is adapted to the same convolution size. This network structure fully leverages the advantages of CNNs and RNNs to extract temporal and spatial features from the spectral data, leading to high-precision pixel-level multispectral remote sensing image classification. The experimental results demonstrate that the overall accuracy of the HCRNN model on the Sentinel-2 dataset reaches 97.62%, which improves the performance by 1.78% compared to the RNN model. Furthermore, this study focused on the changes in forest cover in the study area of Laibin City, Guangxi Zhuang Autonomous Region, which was 7997.1016 km2, 8990.4149 km2, and 8103.0020 km2 in 2017, 2019, and 2021, respectively, with an overall trend of a small increase in the area covered." @default.
- W4386814312 created "2023-09-18" @default.
- W4386814312 creator A5019326217 @default.
- W4386814312 creator A5033704756 @default.
- W4386814312 creator A5048279376 @default.
- W4386814312 creator A5065008189 @default.
- W4386814312 creator A5067812910 @default.
- W4386814312 creator A5078143614 @default.
- W4386814312 date "2023-09-15" @default.
- W4386814312 modified "2023-09-26" @default.
- W4386814312 title "Land Cover Classification of Remote Sensing Images Based on Hierarchical Convolutional Recurrent Neural Network" @default.
- W4386814312 cites W1521436688 @default.
- W4386814312 cites W2009166694 @default.
- W4386814312 cites W2064675550 @default.
- W4386814312 cites W2112796928 @default.
- W4386814312 cites W2126326837 @default.
- W4386814312 cites W2152429055 @default.
- W4386814312 cites W2157331557 @default.
- W4386814312 cites W2314785379 @default.
- W4386814312 cites W2431738724 @default.
- W4386814312 cites W2547995988 @default.
- W4386814312 cites W2600746131 @default.
- W4386814312 cites W2602024454 @default.
- W4386814312 cites W2787506852 @default.
- W4386814312 cites W2809795042 @default.
- W4386814312 cites W2810004461 @default.
- W4386814312 cites W2883175612 @default.
- W4386814312 cites W2899315938 @default.
- W4386814312 cites W2903282641 @default.
- W4386814312 cites W2910419555 @default.
- W4386814312 cites W2910478295 @default.
- W4386814312 cites W2921243146 @default.
- W4386814312 cites W2998823444 @default.
- W4386814312 cites W3023931079 @default.
- W4386814312 cites W3028448552 @default.
- W4386814312 cites W3035805339 @default.
- W4386814312 cites W3044233001 @default.
- W4386814312 cites W3088162569 @default.
- W4386814312 cites W3100011500 @default.
- W4386814312 cites W3101640299 @default.
- W4386814312 cites W3121069613 @default.
- W4386814312 cites W3122774149 @default.
- W4386814312 cites W3130130705 @default.
- W4386814312 cites W3130550871 @default.
- W4386814312 cites W3158413129 @default.
- W4386814312 cites W3201191849 @default.
- W4386814312 cites W4232914504 @default.
- W4386814312 cites W4282036993 @default.
- W4386814312 cites W4285187901 @default.
- W4386814312 cites W4292793991 @default.
- W4386814312 cites W4293100817 @default.
- W4386814312 cites W4302190632 @default.
- W4386814312 cites W4312875835 @default.
- W4386814312 cites W4317809520 @default.
- W4386814312 cites W4319923785 @default.
- W4386814312 cites W4386362918 @default.
- W4386814312 doi "https://doi.org/10.3390/f14091881" @default.
- W4386814312 hasPublicationYear "2023" @default.
- W4386814312 type Work @default.
- W4386814312 citedByCount "0" @default.
- W4386814312 crossrefType "journal-article" @default.
- W4386814312 hasAuthorship W4386814312A5019326217 @default.
- W4386814312 hasAuthorship W4386814312A5033704756 @default.
- W4386814312 hasAuthorship W4386814312A5048279376 @default.
- W4386814312 hasAuthorship W4386814312A5065008189 @default.
- W4386814312 hasAuthorship W4386814312A5067812910 @default.
- W4386814312 hasAuthorship W4386814312A5078143614 @default.
- W4386814312 hasBestOaLocation W43868143121 @default.
- W4386814312 hasConcept C104541649 @default.
- W4386814312 hasConcept C115961682 @default.
- W4386814312 hasConcept C127413603 @default.
- W4386814312 hasConcept C138885662 @default.
- W4386814312 hasConcept C147168706 @default.
- W4386814312 hasConcept C147176958 @default.
- W4386814312 hasConcept C153180895 @default.
- W4386814312 hasConcept C154945302 @default.
- W4386814312 hasConcept C160633673 @default.
- W4386814312 hasConcept C173163844 @default.
- W4386814312 hasConcept C205649164 @default.
- W4386814312 hasConcept C2776401178 @default.
- W4386814312 hasConcept C2780648208 @default.
- W4386814312 hasConcept C41008148 @default.
- W4386814312 hasConcept C41895202 @default.
- W4386814312 hasConcept C4792198 @default.
- W4386814312 hasConcept C50644808 @default.
- W4386814312 hasConcept C52622490 @default.
- W4386814312 hasConcept C62649853 @default.
- W4386814312 hasConcept C75294576 @default.
- W4386814312 hasConcept C81363708 @default.
- W4386814312 hasConceptScore W4386814312C104541649 @default.
- W4386814312 hasConceptScore W4386814312C115961682 @default.
- W4386814312 hasConceptScore W4386814312C127413603 @default.
- W4386814312 hasConceptScore W4386814312C138885662 @default.
- W4386814312 hasConceptScore W4386814312C147168706 @default.
- W4386814312 hasConceptScore W4386814312C147176958 @default.
- W4386814312 hasConceptScore W4386814312C153180895 @default.
- W4386814312 hasConceptScore W4386814312C154945302 @default.
- W4386814312 hasConceptScore W4386814312C160633673 @default.