Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386814424> ?p ?o ?g. }
- W4386814424 endingPage "10401" @default.
- W4386814424 startingPage "10401" @default.
- W4386814424 abstract "Governments and health authorities emphasize the importance of early detection of breast cancer, usually through mammography, to improve prognosis, increase therapeutic options and achieve optimum outcomes. Despite technological advances and the advent of full-field digital mammography (FFDM), diagnosis of breast abnormalities on mammographic images remains a challenge due to qualitative variations in different tissue types and densities. Highly accurate computer-aided diagnosis (CADx) systems could assist in the differentiation between normal and abnormal tissue and the classification of abnormal tissue as benign or malignant. In this paper, classical, advanced fuzzy sets and fusion techniques for image enhancement were combined with three different thresholding methods (Global, Otsu and type-2 fuzzy sets threshold) and three different classifying techniques (K-means, FCM and ANFIS) for the classification of breast masses on FFDM. The aim of this paper is to identify the performance of the advanced fuzzy sets, fuzzy sets type-2 segmentation, decisions based on K-means and FCM, and the ANFIS classifier. Sixty-three combinations were evaluated on ninety-seven digital mammographic masses (sixty-five benign and thirty-two malignant). The performance of the sixty-three combinations was evaluated by estimating the accuracy, the F1 score, and the area under the curve (AUC). LH-XWW enhancement method with Otsu thresholding and FCM classifier outperformed all other combinations with an accuracy of 95.17%, F1 score of 89.42% and AUC of 0.91. This algorithm seems to offer a promising CADx system for breast cancer diagnosis on FFDM." @default.
- W4386814424 created "2023-09-18" @default.
- W4386814424 creator A5012296515 @default.
- W4386814424 creator A5067037895 @default.
- W4386814424 creator A5092780676 @default.
- W4386814424 date "2023-09-17" @default.
- W4386814424 modified "2023-09-26" @default.
- W4386814424 title "Hybrid Intelligent Pattern Recognition Systems for Mass Segmentation and Classification: A Pilot Study on Full-Field Digital Mammograms" @default.
- W4386814424 cites W1494636597 @default.
- W4386814424 cites W1596606208 @default.
- W4386814424 cites W187134083 @default.
- W4386814424 cites W1982141954 @default.
- W4386814424 cites W1995446722 @default.
- W4386814424 cites W2030330616 @default.
- W4386814424 cites W2080844344 @default.
- W4386814424 cites W2082938722 @default.
- W4386814424 cites W2116353952 @default.
- W4386814424 cites W2119436991 @default.
- W4386814424 cites W2133059825 @default.
- W4386814424 cites W2144371464 @default.
- W4386814424 cites W2155508209 @default.
- W4386814424 cites W2191606157 @default.
- W4386814424 cites W2242491276 @default.
- W4386814424 cites W2297240532 @default.
- W4386814424 cites W2544376559 @default.
- W4386814424 cites W2546865374 @default.
- W4386814424 cites W2794174632 @default.
- W4386814424 cites W2913492735 @default.
- W4386814424 cites W2988885541 @default.
- W4386814424 cites W3025602058 @default.
- W4386814424 cites W3041619137 @default.
- W4386814424 cites W3094475019 @default.
- W4386814424 cites W3107000237 @default.
- W4386814424 cites W3131021614 @default.
- W4386814424 cites W3136933864 @default.
- W4386814424 cites W3138330851 @default.
- W4386814424 cites W3144883044 @default.
- W4386814424 cites W3148831051 @default.
- W4386814424 cites W3189381860 @default.
- W4386814424 cites W3215930005 @default.
- W4386814424 cites W4214951253 @default.
- W4386814424 cites W4226245737 @default.
- W4386814424 cites W4285133396 @default.
- W4386814424 cites W4285395311 @default.
- W4386814424 cites W4311064129 @default.
- W4386814424 cites W4311688143 @default.
- W4386814424 cites W4313129691 @default.
- W4386814424 cites W4317653988 @default.
- W4386814424 cites W4321466059 @default.
- W4386814424 cites W4361772798 @default.
- W4386814424 cites W4366124512 @default.
- W4386814424 cites W4377012821 @default.
- W4386814424 cites W4385415975 @default.
- W4386814424 cites W4385753994 @default.
- W4386814424 doi "https://doi.org/10.3390/app131810401" @default.
- W4386814424 hasPublicationYear "2023" @default.
- W4386814424 type Work @default.
- W4386814424 citedByCount "0" @default.
- W4386814424 crossrefType "journal-article" @default.
- W4386814424 hasAuthorship W4386814424A5012296515 @default.
- W4386814424 hasAuthorship W4386814424A5067037895 @default.
- W4386814424 hasAuthorship W4386814424A5092780676 @default.
- W4386814424 hasBestOaLocation W43868144241 @default.
- W4386814424 hasConcept C115961682 @default.
- W4386814424 hasConcept C121608353 @default.
- W4386814424 hasConcept C124504099 @default.
- W4386814424 hasConcept C126322002 @default.
- W4386814424 hasConcept C153180895 @default.
- W4386814424 hasConcept C154945302 @default.
- W4386814424 hasConcept C191178318 @default.
- W4386814424 hasConcept C21729346 @default.
- W4386814424 hasConcept C2779549770 @default.
- W4386814424 hasConcept C2780472235 @default.
- W4386814424 hasConcept C2781281974 @default.
- W4386814424 hasConcept C41008148 @default.
- W4386814424 hasConcept C530470458 @default.
- W4386814424 hasConcept C58166 @default.
- W4386814424 hasConcept C71924100 @default.
- W4386814424 hasConcept C89600930 @default.
- W4386814424 hasConcept C95623464 @default.
- W4386814424 hasConceptScore W4386814424C115961682 @default.
- W4386814424 hasConceptScore W4386814424C121608353 @default.
- W4386814424 hasConceptScore W4386814424C124504099 @default.
- W4386814424 hasConceptScore W4386814424C126322002 @default.
- W4386814424 hasConceptScore W4386814424C153180895 @default.
- W4386814424 hasConceptScore W4386814424C154945302 @default.
- W4386814424 hasConceptScore W4386814424C191178318 @default.
- W4386814424 hasConceptScore W4386814424C21729346 @default.
- W4386814424 hasConceptScore W4386814424C2779549770 @default.
- W4386814424 hasConceptScore W4386814424C2780472235 @default.
- W4386814424 hasConceptScore W4386814424C2781281974 @default.
- W4386814424 hasConceptScore W4386814424C41008148 @default.
- W4386814424 hasConceptScore W4386814424C530470458 @default.
- W4386814424 hasConceptScore W4386814424C58166 @default.
- W4386814424 hasConceptScore W4386814424C71924100 @default.
- W4386814424 hasConceptScore W4386814424C89600930 @default.
- W4386814424 hasConceptScore W4386814424C95623464 @default.
- W4386814424 hasIssue "18" @default.