Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386814732> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4386814732 endingPage "10370" @default.
- W4386814732 startingPage "10370" @default.
- W4386814732 abstract "This paper proposes a method for detecting and recognizing partial discharges in high-voltage (HV) equipment. The aim is to address issues commonly found in traditional systems, including complex operations, high computational demands, significant power consumption, and elevated costs. Various types of discharges were investigated in an HV laboratory environment. Discharge data were collected using a high-frequency current sensor and a microcontroller. Subsequently, this data underwent processing and transformation into feature sets using the phase-resolved partial discharge analysis technique. These features were then converted into grayscale map samples in PNG format. To achieve partial discharge classification, a convolutional neural network (CNN) was trained on these samples. After successful training, the network model was adapted for deployment on a microcontroller, facilitated by the STM32Cube.AI ecosystem, enabling real-time partial discharge recognition. The study also examined storage requirements across different CNN layers and their impact on recognition efficacy. To assess the algorithm’s robustness, recognition accuracy was tested under varying discharge voltages, insulation media thicknesses, and noise levels. The test results demonstrated that the algorithm could be effectively implemented on a microcontroller, achieving a recognition accuracy exceeding 98%." @default.
- W4386814732 created "2023-09-18" @default.
- W4386814732 creator A5044497095 @default.
- W4386814732 creator A5052588320 @default.
- W4386814732 creator A5065238326 @default.
- W4386814732 creator A5080775019 @default.
- W4386814732 creator A5084387784 @default.
- W4386814732 date "2023-09-16" @default.
- W4386814732 modified "2023-09-26" @default.
- W4386814732 title "Partial Discharge Pattern-Recognition Method Based on Embedded Artificial Intelligence" @default.
- W4386814732 cites W1849277567 @default.
- W4386814732 cites W2000655115 @default.
- W4386814732 cites W2002610002 @default.
- W4386814732 cites W2090484961 @default.
- W4386814732 cites W2115383907 @default.
- W4386814732 cites W2480826679 @default.
- W4386814732 cites W2896357121 @default.
- W4386814732 cites W2919115771 @default.
- W4386814732 cites W2962834855 @default.
- W4386814732 cites W2966960917 @default.
- W4386814732 cites W3009210375 @default.
- W4386814732 cites W3174730246 @default.
- W4386814732 cites W3196362565 @default.
- W4386814732 cites W4309711105 @default.
- W4386814732 cites W4360862158 @default.
- W4386814732 cites W4383345875 @default.
- W4386814732 doi "https://doi.org/10.3390/app131810370" @default.
- W4386814732 hasPublicationYear "2023" @default.
- W4386814732 type Work @default.
- W4386814732 citedByCount "0" @default.
- W4386814732 crossrefType "journal-article" @default.
- W4386814732 hasAuthorship W4386814732A5044497095 @default.
- W4386814732 hasAuthorship W4386814732A5052588320 @default.
- W4386814732 hasAuthorship W4386814732A5065238326 @default.
- W4386814732 hasAuthorship W4386814732A5080775019 @default.
- W4386814732 hasAuthorship W4386814732A5084387784 @default.
- W4386814732 hasBestOaLocation W43868147321 @default.
- W4386814732 hasConcept C104317684 @default.
- W4386814732 hasConcept C119599485 @default.
- W4386814732 hasConcept C127413603 @default.
- W4386814732 hasConcept C130143024 @default.
- W4386814732 hasConcept C153180895 @default.
- W4386814732 hasConcept C154945302 @default.
- W4386814732 hasConcept C165801399 @default.
- W4386814732 hasConcept C173018170 @default.
- W4386814732 hasConcept C185592680 @default.
- W4386814732 hasConcept C41008148 @default.
- W4386814732 hasConcept C55493867 @default.
- W4386814732 hasConcept C63479239 @default.
- W4386814732 hasConcept C81363708 @default.
- W4386814732 hasConcept C9390403 @default.
- W4386814732 hasConceptScore W4386814732C104317684 @default.
- W4386814732 hasConceptScore W4386814732C119599485 @default.
- W4386814732 hasConceptScore W4386814732C127413603 @default.
- W4386814732 hasConceptScore W4386814732C130143024 @default.
- W4386814732 hasConceptScore W4386814732C153180895 @default.
- W4386814732 hasConceptScore W4386814732C154945302 @default.
- W4386814732 hasConceptScore W4386814732C165801399 @default.
- W4386814732 hasConceptScore W4386814732C173018170 @default.
- W4386814732 hasConceptScore W4386814732C185592680 @default.
- W4386814732 hasConceptScore W4386814732C41008148 @default.
- W4386814732 hasConceptScore W4386814732C55493867 @default.
- W4386814732 hasConceptScore W4386814732C63479239 @default.
- W4386814732 hasConceptScore W4386814732C81363708 @default.
- W4386814732 hasConceptScore W4386814732C9390403 @default.
- W4386814732 hasIssue "18" @default.
- W4386814732 hasLocation W43868147321 @default.
- W4386814732 hasOpenAccess W4386814732 @default.
- W4386814732 hasPrimaryLocation W43868147321 @default.
- W4386814732 hasRelatedWork W2521062615 @default.
- W4386814732 hasRelatedWork W2565492625 @default.
- W4386814732 hasRelatedWork W2735477435 @default.
- W4386814732 hasRelatedWork W2767651786 @default.
- W4386814732 hasRelatedWork W2912288872 @default.
- W4386814732 hasRelatedWork W3016958897 @default.
- W4386814732 hasRelatedWork W3181746755 @default.
- W4386814732 hasRelatedWork W4283379348 @default.
- W4386814732 hasRelatedWork W4312417841 @default.
- W4386814732 hasRelatedWork W4385415357 @default.
- W4386814732 hasVolume "13" @default.
- W4386814732 isParatext "false" @default.
- W4386814732 isRetracted "false" @default.
- W4386814732 workType "article" @default.