Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386814903> ?p ?o ?g. }
- W4386814903 endingPage "14160" @default.
- W4386814903 startingPage "14160" @default.
- W4386814903 abstract "Fullerene derivatives (FDs) are widely used in nanomaterials production, the pharmaceutical industry and biomedicine. In the present study, we focused on the potential toxic effects of FDs on the aquatic environment. First, we analyzed the binding affinity of 169 FDs to 10 human proteins (1D6U, 1E3K, 1GOS, 1GS4, 1H82, 1OG5, 1UOM, 2F9Q, 2J0D, 3ERT) obtained from the Protein Data Bank (PDB) and showing high similarity to proteins from aquatic species. Then, the binding activity of 169 FDs to the enzyme acetylcholinesterase (AChE)-as a known target of toxins in fathead minnows and Daphnia magna, causing the inhibition of AChE-was analyzed. Finally, the structural aquatic toxicity alerts obtained from ToxAlert were used to confirm the possible mechanism of action. Machine learning and cheminformatics tools were used to analyze the data. Counter-propagation artificial neural network (CPANN) models were used to determine key binding properties of FDs to proteins associated with aquatic toxicity. Predicting the binding affinity of unknown FDs using quantitative structure-activity relationship (QSAR) models eliminates the need for complex and time-consuming calculations. The results of the study show which structural features of FDs have the greatest impact on aquatic organisms and help prioritize FDs and make manufacturing decisions." @default.
- W4386814903 created "2023-09-18" @default.
- W4386814903 creator A5010105517 @default.
- W4386814903 creator A5015410968 @default.
- W4386814903 creator A5017176365 @default.
- W4386814903 creator A5035637471 @default.
- W4386814903 creator A5042755999 @default.
- W4386814903 creator A5060859704 @default.
- W4386814903 creator A5062774932 @default.
- W4386814903 creator A5078120130 @default.
- W4386814903 creator A5078567166 @default.
- W4386814903 date "2023-09-15" @default.
- W4386814903 modified "2023-10-13" @default.
- W4386814903 title "Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives" @default.
- W4386814903 cites W1241726016 @default.
- W4386814903 cites W137248494 @default.
- W4386814903 cites W1574994167 @default.
- W4386814903 cites W1606334451 @default.
- W4386814903 cites W1896254721 @default.
- W4386814903 cites W1964542856 @default.
- W4386814903 cites W1971849220 @default.
- W4386814903 cites W1982597534 @default.
- W4386814903 cites W1982698107 @default.
- W4386814903 cites W1989660072 @default.
- W4386814903 cites W1990237101 @default.
- W4386814903 cites W1995831958 @default.
- W4386814903 cites W2001859434 @default.
- W4386814903 cites W2006801911 @default.
- W4386814903 cites W2013474056 @default.
- W4386814903 cites W2019142785 @default.
- W4386814903 cites W2022152519 @default.
- W4386814903 cites W2024674972 @default.
- W4386814903 cites W2029527682 @default.
- W4386814903 cites W2029960956 @default.
- W4386814903 cites W2034582824 @default.
- W4386814903 cites W2043076340 @default.
- W4386814903 cites W2054716083 @default.
- W4386814903 cites W2054912906 @default.
- W4386814903 cites W2054921925 @default.
- W4386814903 cites W2055497666 @default.
- W4386814903 cites W2061040945 @default.
- W4386814903 cites W2063257715 @default.
- W4386814903 cites W2069506489 @default.
- W4386814903 cites W2073409677 @default.
- W4386814903 cites W2074681440 @default.
- W4386814903 cites W2077961825 @default.
- W4386814903 cites W2084371175 @default.
- W4386814903 cites W2085907924 @default.
- W4386814903 cites W2127126040 @default.
- W4386814903 cites W2134967712 @default.
- W4386814903 cites W2151460035 @default.
- W4386814903 cites W2153492856 @default.
- W4386814903 cites W2162534278 @default.
- W4386814903 cites W2167506129 @default.
- W4386814903 cites W2300740274 @default.
- W4386814903 cites W2313174391 @default.
- W4386814903 cites W2484186669 @default.
- W4386814903 cites W2519096858 @default.
- W4386814903 cites W2537079286 @default.
- W4386814903 cites W2545205764 @default.
- W4386814903 cites W2547293090 @default.
- W4386814903 cites W2588159689 @default.
- W4386814903 cites W2601253643 @default.
- W4386814903 cites W2732271669 @default.
- W4386814903 cites W2735579924 @default.
- W4386814903 cites W2766708256 @default.
- W4386814903 cites W2770402067 @default.
- W4386814903 cites W2770709444 @default.
- W4386814903 cites W2790628065 @default.
- W4386814903 cites W2800606705 @default.
- W4386814903 cites W2891915257 @default.
- W4386814903 cites W2898364362 @default.
- W4386814903 cites W2903794539 @default.
- W4386814903 cites W2904763666 @default.
- W4386814903 cites W2905888178 @default.
- W4386814903 cites W2914510031 @default.
- W4386814903 cites W2921305829 @default.
- W4386814903 cites W2922067746 @default.
- W4386814903 cites W2943778098 @default.
- W4386814903 cites W2945546662 @default.
- W4386814903 cites W2970063454 @default.
- W4386814903 cites W2998316241 @default.
- W4386814903 cites W3037689350 @default.
- W4386814903 cites W3046435732 @default.
- W4386814903 cites W3092419817 @default.
- W4386814903 cites W3111905213 @default.
- W4386814903 cites W3115434616 @default.
- W4386814903 cites W3122285846 @default.
- W4386814903 cites W3157868274 @default.
- W4386814903 cites W3197232940 @default.
- W4386814903 cites W3215606371 @default.
- W4386814903 cites W3216964786 @default.
- W4386814903 cites W3217562320 @default.
- W4386814903 cites W4200606930 @default.
- W4386814903 cites W4210994512 @default.
- W4386814903 cites W4211023342 @default.
- W4386814903 cites W4245176872 @default.
- W4386814903 cites W4289549754 @default.