Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386817963> ?p ?o ?g. }
- W4386817963 endingPage "375" @default.
- W4386817963 startingPage "342" @default.
- W4386817963 abstract "Increasingly, patient medication adherence data are being consolidated from claims databases and electronic health records (EHRs). Such databases offer an indirect avenue to gauge medication adherence in our data-rich healthcare milieu. The surge in data accessibility, coupled with the pressing need for its conversion to actionable insights, has spotlighted data mining, with machine learning (ML) emerging as a pivotal technique. Nonadherence poses heightened health risks and escalates medical costs. This paper elucidates the synergistic interaction between medical database mining for medication adherence and the role of ML in fostering knowledge discovery.We conducted a comprehensive review of EHR applications in the realm of medication adherence, leveraging ML techniques. We expounded on the evolution and structure of medical databases pertinent to medication adherence and harnessed both supervised and unsupervised ML paradigms to delve into adherence and its ramifications.Our study underscores the applications of medical databases and ML, encompassing both supervised and unsupervised learning, for medication adherence in clinical big data. Databases like SEER and NHANES, often underutilized due to their intricacies, have gained prominence. Employing ML to excavate patient medication logs from these databases facilitates adherence analysis. Such findings are pivotal for clinical decision-making, risk stratification, and scholarly pursuits, aiming to elevate healthcare quality.Advanced data mining in the era of big data has revolutionized medication adherence research, thereby enhancing patient care. Emphasizing bespoke interventions and research could herald transformative shifts in therapeutic modalities." @default.
- W4386817963 created "2023-09-19" @default.
- W4386817963 creator A5004876783 @default.
- W4386817963 creator A5014691101 @default.
- W4386817963 creator A5016197836 @default.
- W4386817963 creator A5026961608 @default.
- W4386817963 creator A5027440622 @default.
- W4386817963 creator A5057743730 @default.
- W4386817963 creator A5080102032 @default.
- W4386817963 date "2023-09-01" @default.
- W4386817963 modified "2023-10-15" @default.
- W4386817963 title "Exploring patient medication adherence and data mining methods in clinical big data: A contemporary review" @default.
- W4386817963 cites W1538368282 @default.
- W4386817963 cites W1554672086 @default.
- W4386817963 cites W1584935767 @default.
- W4386817963 cites W1585721025 @default.
- W4386817963 cites W1602622919 @default.
- W4386817963 cites W1631320694 @default.
- W4386817963 cites W1835915349 @default.
- W4386817963 cites W1845225129 @default.
- W4386817963 cites W1875061881 @default.
- W4386817963 cites W1896421514 @default.
- W4386817963 cites W1964747147 @default.
- W4386817963 cites W1966624777 @default.
- W4386817963 cites W1970957826 @default.
- W4386817963 cites W1972044995 @default.
- W4386817963 cites W1977112755 @default.
- W4386817963 cites W1979193411 @default.
- W4386817963 cites W1982705327 @default.
- W4386817963 cites W1990856039 @default.
- W4386817963 cites W1993609051 @default.
- W4386817963 cites W1995130964 @default.
- W4386817963 cites W1995572996 @default.
- W4386817963 cites W1995924392 @default.
- W4386817963 cites W1997098642 @default.
- W4386817963 cites W1997780159 @default.
- W4386817963 cites W1999055527 @default.
- W4386817963 cites W2002084628 @default.
- W4386817963 cites W2002965541 @default.
- W4386817963 cites W2005316203 @default.
- W4386817963 cites W2007848222 @default.
- W4386817963 cites W2010351913 @default.
- W4386817963 cites W2010559564 @default.
- W4386817963 cites W2011430131 @default.
- W4386817963 cites W2014218324 @default.
- W4386817963 cites W2025591442 @default.
- W4386817963 cites W2028194465 @default.
- W4386817963 cites W2035876673 @default.
- W4386817963 cites W2036109700 @default.
- W4386817963 cites W2038403313 @default.
- W4386817963 cites W2038826088 @default.
- W4386817963 cites W2040192752 @default.
- W4386817963 cites W2040331803 @default.
- W4386817963 cites W2043136009 @default.
- W4386817963 cites W2047695916 @default.
- W4386817963 cites W2049738506 @default.
- W4386817963 cites W2054124141 @default.
- W4386817963 cites W2056950322 @default.
- W4386817963 cites W2057112394 @default.
- W4386817963 cites W2060519623 @default.
- W4386817963 cites W2063844762 @default.
- W4386817963 cites W2065961574 @default.
- W4386817963 cites W2071188333 @default.
- W4386817963 cites W2071893120 @default.
- W4386817963 cites W2071965987 @default.
- W4386817963 cites W2083866813 @default.
- W4386817963 cites W2086197387 @default.
- W4386817963 cites W2092902149 @default.
- W4386817963 cites W2096482205 @default.
- W4386817963 cites W2098274762 @default.
- W4386817963 cites W2098884960 @default.
- W4386817963 cites W2101833106 @default.
- W4386817963 cites W2109694981 @default.
- W4386817963 cites W2116716283 @default.
- W4386817963 cites W2121018841 @default.
- W4386817963 cites W2122111042 @default.
- W4386817963 cites W2128377845 @default.
- W4386817963 cites W2128873747 @default.
- W4386817963 cites W2132582362 @default.
- W4386817963 cites W2136239977 @default.
- W4386817963 cites W2138451337 @default.
- W4386817963 cites W2139155614 @default.
- W4386817963 cites W2139797221 @default.
- W4386817963 cites W2145909170 @default.
- W4386817963 cites W2147058580 @default.
- W4386817963 cites W2148138940 @default.
- W4386817963 cites W2150374621 @default.
- W4386817963 cites W2151839099 @default.
- W4386817963 cites W2151995729 @default.
- W4386817963 cites W2155441883 @default.
- W4386817963 cites W2157029647 @default.
- W4386817963 cites W2158630579 @default.
- W4386817963 cites W2160272053 @default.
- W4386817963 cites W2161843628 @default.
- W4386817963 cites W2191350219 @default.
- W4386817963 cites W2194138443 @default.
- W4386817963 cites W2234425174 @default.
- W4386817963 cites W2256980343 @default.