Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386819106> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4386819106 endingPage "104331" @default.
- W4386819106 startingPage "104331" @default.
- W4386819106 abstract "Accurate traffic prediction is crucial for planning, management and control of intelligent transportation systems. Most state-of-the-art methods for traffic prediction effectively capture complex traffic patterns (e.g. spatial and temporal correlations of traffic data) by employing spatio-temporal neural networks as prediction models, together with graph convolution networks to learn spatial correlations of prediction objects (e.g. traffic states of road segments, as in this study). Such spatial correlations can be regarded as micro correlations. However, there are also macro correlations between regions, each of which is composed of multiple road segments or artificially partitioned areas. Macro correlations represent another type of interaction within road segments, and should be carefully considered when predicting traffic. The diversity of micro spatial correlations and corresponding macro spatial correlations (e.g. correlations based on physical proximity or traffic pattern similarity) further increases the complexity of traffic prediction. We overcome these challenges by developing a macro–micro spatio-temporal neural network model, denoted ‘MMSTNet’. MMSTNet captures spatio-temporal patterns by (a) utilizing a graph convolution network and a spatial attention network to capture micro and macro spatial correlations, respectively; (b) employing a temporal convolution network and a temporal attention network to learn temporal patterns; and (c) integrating hierarchically learned representations based on designed attention mechanisms. We perform evaluations on two real-world datasets and thereby demonstrate that MMSTNet outperforms state-of-the-art models in traffic prediction tasks." @default.
- W4386819106 created "2023-09-19" @default.
- W4386819106 creator A5014782973 @default.
- W4386819106 creator A5015218854 @default.
- W4386819106 creator A5038761412 @default.
- W4386819106 creator A5039820086 @default.
- W4386819106 creator A5045705475 @default.
- W4386819106 creator A5050237799 @default.
- W4386819106 creator A5064844620 @default.
- W4386819106 creator A5087854367 @default.
- W4386819106 date "2023-11-01" @default.
- W4386819106 modified "2023-10-15" @default.
- W4386819106 title "A macro–micro spatio-temporal neural network for traffic prediction" @default.
- W4386819106 cites W1973943669 @default.
- W4386819106 cites W2069929199 @default.
- W4386819106 cites W2101491865 @default.
- W4386819106 cites W2131739422 @default.
- W4386819106 cites W2528639018 @default.
- W4386819106 cites W2558460151 @default.
- W4386819106 cites W2573587735 @default.
- W4386819106 cites W2588759037 @default.
- W4386819106 cites W2755146079 @default.
- W4386819106 cites W2946964936 @default.
- W4386819106 cites W2962756421 @default.
- W4386819106 cites W2964319113 @default.
- W4386819106 cites W2981413347 @default.
- W4386819106 cites W2982108874 @default.
- W4386819106 cites W2997848713 @default.
- W4386819106 cites W3010852232 @default.
- W4386819106 cites W3045200674 @default.
- W4386819106 cites W3088578860 @default.
- W4386819106 cites W3152893301 @default.
- W4386819106 cites W3155957538 @default.
- W4386819106 cites W3175016653 @default.
- W4386819106 cites W3198238235 @default.
- W4386819106 cites W4205487217 @default.
- W4386819106 cites W4210257598 @default.
- W4386819106 doi "https://doi.org/10.1016/j.trc.2023.104331" @default.
- W4386819106 hasPublicationYear "2023" @default.
- W4386819106 type Work @default.
- W4386819106 citedByCount "0" @default.
- W4386819106 crossrefType "journal-article" @default.
- W4386819106 hasAuthorship W4386819106A5014782973 @default.
- W4386819106 hasAuthorship W4386819106A5015218854 @default.
- W4386819106 hasAuthorship W4386819106A5038761412 @default.
- W4386819106 hasAuthorship W4386819106A5039820086 @default.
- W4386819106 hasAuthorship W4386819106A5045705475 @default.
- W4386819106 hasAuthorship W4386819106A5050237799 @default.
- W4386819106 hasAuthorship W4386819106A5064844620 @default.
- W4386819106 hasAuthorship W4386819106A5087854367 @default.
- W4386819106 hasConcept C124101348 @default.
- W4386819106 hasConcept C132525143 @default.
- W4386819106 hasConcept C150060386 @default.
- W4386819106 hasConcept C153180895 @default.
- W4386819106 hasConcept C154945302 @default.
- W4386819106 hasConcept C166955791 @default.
- W4386819106 hasConcept C199360897 @default.
- W4386819106 hasConcept C41008148 @default.
- W4386819106 hasConcept C45347329 @default.
- W4386819106 hasConcept C50644808 @default.
- W4386819106 hasConcept C76155785 @default.
- W4386819106 hasConcept C80444323 @default.
- W4386819106 hasConcept C81363708 @default.
- W4386819106 hasConceptScore W4386819106C124101348 @default.
- W4386819106 hasConceptScore W4386819106C132525143 @default.
- W4386819106 hasConceptScore W4386819106C150060386 @default.
- W4386819106 hasConceptScore W4386819106C153180895 @default.
- W4386819106 hasConceptScore W4386819106C154945302 @default.
- W4386819106 hasConceptScore W4386819106C166955791 @default.
- W4386819106 hasConceptScore W4386819106C199360897 @default.
- W4386819106 hasConceptScore W4386819106C41008148 @default.
- W4386819106 hasConceptScore W4386819106C45347329 @default.
- W4386819106 hasConceptScore W4386819106C50644808 @default.
- W4386819106 hasConceptScore W4386819106C76155785 @default.
- W4386819106 hasConceptScore W4386819106C80444323 @default.
- W4386819106 hasConceptScore W4386819106C81363708 @default.
- W4386819106 hasFunder F4320321001 @default.
- W4386819106 hasFunder F4320321592 @default.
- W4386819106 hasFunder F4320322919 @default.
- W4386819106 hasFunder F4320334978 @default.
- W4386819106 hasFunder F4320335777 @default.
- W4386819106 hasLocation W43868191061 @default.
- W4386819106 hasOpenAccess W4386819106 @default.
- W4386819106 hasPrimaryLocation W43868191061 @default.
- W4386819106 hasRelatedWork W1509860481 @default.
- W4386819106 hasRelatedWork W1605713622 @default.
- W4386819106 hasRelatedWork W1989362889 @default.
- W4386819106 hasRelatedWork W2030816003 @default.
- W4386819106 hasRelatedWork W2076325756 @default.
- W4386819106 hasRelatedWork W2150013480 @default.
- W4386819106 hasRelatedWork W2964954556 @default.
- W4386819106 hasRelatedWork W3019910406 @default.
- W4386819106 hasRelatedWork W4386206750 @default.
- W4386819106 hasRelatedWork W81423522 @default.
- W4386819106 hasVolume "156" @default.
- W4386819106 isParatext "false" @default.
- W4386819106 isRetracted "false" @default.
- W4386819106 workType "article" @default.