Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386819124> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4386819124 endingPage "187102" @default.
- W4386819124 startingPage "187102" @default.
- W4386819124 abstract "Liquid iron is the major component of planetary cores. Its structure and dynamics under high pressure and temperature is of great significance in studying geophysics and planetary science. However, for experimental techniques, it is still difficult to generate and probe such a state of matter under extreme conditions, while for theoretical method like molecular dynamics simulation, the reliable estimation of dynamic properties requires both large simulation size and <i>ab initio</i> accuracy, resulting in unaffordable computational costs for traditional method. Owing to the technical limitation, the understanding of such matters remains limited. In this work, combining molecular dynamics simulation, we establish a neural network potential energy surface model to study the static and dynamic properties of liquid iron at its extreme thermodynamic state close to core-mantle boundary. The implementation of deep neural network extends the simulation scales from one hundred atoms to millions of atoms within quantum accuracy. The estimated static and dynamic structure factor show good consistency with all available X-ray diffraction and inelastic X-ray scattering experimental observations, while the empirical potential based on embedding-atom-method fails to give a unified description of liquid iron across a wide range of thermodynamic conditions. We also demonstrate that the transport property like diffusion coefficient exhibits a strong size effect, which requires more than at least ten thousands of atoms to give a converged value. Our results show that the combination of deep learning technology and molecular modelling provides a way to describe matter realistically under extreme conditions." @default.
- W4386819124 created "2023-09-19" @default.
- W4386819124 creator A5067483347 @default.
- W4386819124 creator A5072632061 @default.
- W4386819124 creator A5085033173 @default.
- W4386819124 creator A5088745537 @default.
- W4386819124 date "2023-01-01" @default.
- W4386819124 modified "2023-09-27" @default.
- W4386819124 title "Large scale and quantum accurate molecular dynamics simulation: liquid iron under extreme condition" @default.
- W4386819124 cites W1981368803 @default.
- W4386819124 cites W2003601626 @default.
- W4386819124 cites W2025444507 @default.
- W4386819124 cites W2062221814 @default.
- W4386819124 cites W2080671031 @default.
- W4386819124 cites W2083222334 @default.
- W4386819124 cites W2083415705 @default.
- W4386819124 cites W2087810670 @default.
- W4386819124 cites W2093749422 @default.
- W4386819124 cites W2138424291 @default.
- W4386819124 cites W2266705592 @default.
- W4386819124 cites W2480852144 @default.
- W4386819124 cites W2564305211 @default.
- W4386819124 cites W26088913 @default.
- W4386819124 cites W2742127985 @default.
- W4386819124 cites W2775708988 @default.
- W4386819124 cites W2898009062 @default.
- W4386819124 cites W2993837725 @default.
- W4386819124 cites W3017722065 @default.
- W4386819124 cites W3101712784 @default.
- W4386819124 cites W3113371035 @default.
- W4386819124 cites W3188980902 @default.
- W4386819124 cites W4206002573 @default.
- W4386819124 cites W4304606622 @default.
- W4386819124 cites W4320733976 @default.
- W4386819124 cites W4324139763 @default.
- W4386819124 cites W4383995031 @default.
- W4386819124 doi "https://doi.org/10.7498/aps.72.20231258" @default.
- W4386819124 hasPublicationYear "2023" @default.
- W4386819124 type Work @default.
- W4386819124 citedByCount "0" @default.
- W4386819124 crossrefType "journal-article" @default.
- W4386819124 hasAuthorship W4386819124A5067483347 @default.
- W4386819124 hasAuthorship W4386819124A5072632061 @default.
- W4386819124 hasAuthorship W4386819124A5085033173 @default.
- W4386819124 hasAuthorship W4386819124A5088745537 @default.
- W4386819124 hasBestOaLocation W43868191241 @default.
- W4386819124 hasConcept C121332964 @default.
- W4386819124 hasConcept C121864883 @default.
- W4386819124 hasConcept C30475298 @default.
- W4386819124 hasConcept C41008148 @default.
- W4386819124 hasConcept C59593255 @default.
- W4386819124 hasConcept C62520636 @default.
- W4386819124 hasConcept C84114770 @default.
- W4386819124 hasConceptScore W4386819124C121332964 @default.
- W4386819124 hasConceptScore W4386819124C121864883 @default.
- W4386819124 hasConceptScore W4386819124C30475298 @default.
- W4386819124 hasConceptScore W4386819124C41008148 @default.
- W4386819124 hasConceptScore W4386819124C59593255 @default.
- W4386819124 hasConceptScore W4386819124C62520636 @default.
- W4386819124 hasConceptScore W4386819124C84114770 @default.
- W4386819124 hasIssue "18" @default.
- W4386819124 hasLocation W43868191241 @default.
- W4386819124 hasOpenAccess W4386819124 @default.
- W4386819124 hasPrimaryLocation W43868191241 @default.
- W4386819124 hasRelatedWork W1975516339 @default.
- W4386819124 hasRelatedWork W1979636120 @default.
- W4386819124 hasRelatedWork W2000045761 @default.
- W4386819124 hasRelatedWork W2030596326 @default.
- W4386819124 hasRelatedWork W2033116315 @default.
- W4386819124 hasRelatedWork W2052104336 @default.
- W4386819124 hasRelatedWork W2078162783 @default.
- W4386819124 hasRelatedWork W2089020875 @default.
- W4386819124 hasRelatedWork W2782882015 @default.
- W4386819124 hasRelatedWork W2807582166 @default.
- W4386819124 hasVolume "72" @default.
- W4386819124 isParatext "false" @default.
- W4386819124 isRetracted "false" @default.
- W4386819124 workType "article" @default.