Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386822843> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4386822843 abstract "In the biomedical realm, automatic medical image segmentation is regarded as a challenging research topic. Among the different automatic methods, U-shaped models have significantly advanced a wide range of medical image segmentation. When training deep neural networks like U-net, gradient degradation is one of the problems we need to prevent from occurring. In addition, giving more focus to the important objects in the image while disregarding unneeded areas is one of the desired properties in medical image segmentation. In order to prevent gradient degradation and focus on the important objects in the image, a novel U-net-based architecture is proposed for cardiac MRI segmentation. The model uses the merit of U-Net, residual U-Net (ResU-Net), and Attention U-Net (AttU-Net) for better performance and prediction results. U-Net, ResU-Net, and AttU-Net are used as benchmark models. For the model to efficiently train the data and to improve its accuracy, a data preprocessing mechanism is applied. The data preprocessing step includes contrast enhancement, data augmentation, and data normalization. For the contrast enhancement method, we tested three different contrast enhancement methods. These methods are non-linear contrast enhancement (gamma correction), multi-scale Retinex, and adaptive histogram equalization. After testing the three contrast enhancement methods on the data, the best one was selected for use in the deep learning algorithms. The proposed and benchmark models are tested on data from Anzhen Hospital and ACDC public data set. The result shows that the proposed model achieved a better prediction result on both data sets than the benchmarks. This is due to the benefits of using ResU-Net and AttU - Net, which enable it to concentrate on the small class, reintroduce features, and prevent gradient degradation, resulting in its advantage." @default.
- W4386822843 created "2023-09-19" @default.
- W4386822843 creator A5024866488 @default.
- W4386822843 creator A5038893459 @default.
- W4386822843 creator A5059185279 @default.
- W4386822843 creator A5070349528 @default.
- W4386822843 creator A5092893419 @default.
- W4386822843 date "2023-07-24" @default.
- W4386822843 modified "2023-09-29" @default.
- W4386822843 title "Automatic Cardiac MRI Segmentation Using Deep Learning" @default.
- W4386822843 cites W2302255633 @default.
- W4386822843 cites W2804047627 @default.
- W4386822843 cites W2978708129 @default.
- W4386822843 cites W3114814504 @default.
- W4386822843 cites W3168491317 @default.
- W4386822843 cites W3206685025 @default.
- W4386822843 cites W4286642328 @default.
- W4386822843 doi "https://doi.org/10.23919/ccc58697.2023.10239829" @default.
- W4386822843 hasPublicationYear "2023" @default.
- W4386822843 type Work @default.
- W4386822843 citedByCount "0" @default.
- W4386822843 crossrefType "proceedings-article" @default.
- W4386822843 hasAuthorship W4386822843A5024866488 @default.
- W4386822843 hasAuthorship W4386822843A5038893459 @default.
- W4386822843 hasAuthorship W4386822843A5059185279 @default.
- W4386822843 hasAuthorship W4386822843A5070349528 @default.
- W4386822843 hasAuthorship W4386822843A5092893419 @default.
- W4386822843 hasConcept C108583219 @default.
- W4386822843 hasConcept C124504099 @default.
- W4386822843 hasConcept C13280743 @default.
- W4386822843 hasConcept C136886441 @default.
- W4386822843 hasConcept C144024400 @default.
- W4386822843 hasConcept C153180895 @default.
- W4386822843 hasConcept C154945302 @default.
- W4386822843 hasConcept C185798385 @default.
- W4386822843 hasConcept C19165224 @default.
- W4386822843 hasConcept C205649164 @default.
- W4386822843 hasConcept C2776502983 @default.
- W4386822843 hasConcept C31972630 @default.
- W4386822843 hasConcept C34736171 @default.
- W4386822843 hasConcept C41008148 @default.
- W4386822843 hasConcept C50644808 @default.
- W4386822843 hasConcept C89600930 @default.
- W4386822843 hasConceptScore W4386822843C108583219 @default.
- W4386822843 hasConceptScore W4386822843C124504099 @default.
- W4386822843 hasConceptScore W4386822843C13280743 @default.
- W4386822843 hasConceptScore W4386822843C136886441 @default.
- W4386822843 hasConceptScore W4386822843C144024400 @default.
- W4386822843 hasConceptScore W4386822843C153180895 @default.
- W4386822843 hasConceptScore W4386822843C154945302 @default.
- W4386822843 hasConceptScore W4386822843C185798385 @default.
- W4386822843 hasConceptScore W4386822843C19165224 @default.
- W4386822843 hasConceptScore W4386822843C205649164 @default.
- W4386822843 hasConceptScore W4386822843C2776502983 @default.
- W4386822843 hasConceptScore W4386822843C31972630 @default.
- W4386822843 hasConceptScore W4386822843C34736171 @default.
- W4386822843 hasConceptScore W4386822843C41008148 @default.
- W4386822843 hasConceptScore W4386822843C50644808 @default.
- W4386822843 hasConceptScore W4386822843C89600930 @default.
- W4386822843 hasLocation W43868228431 @default.
- W4386822843 hasOpenAccess W4386822843 @default.
- W4386822843 hasPrimaryLocation W43868228431 @default.
- W4386822843 hasRelatedWork W1582206143 @default.
- W4386822843 hasRelatedWork W1669643531 @default.
- W4386822843 hasRelatedWork W2005437358 @default.
- W4386822843 hasRelatedWork W2008656436 @default.
- W4386822843 hasRelatedWork W2023558673 @default.
- W4386822843 hasRelatedWork W2134924024 @default.
- W4386822843 hasRelatedWork W2517104666 @default.
- W4386822843 hasRelatedWork W2533072256 @default.
- W4386822843 hasRelatedWork W2790662084 @default.
- W4386822843 hasRelatedWork W4285827401 @default.
- W4386822843 isParatext "false" @default.
- W4386822843 isRetracted "false" @default.
- W4386822843 workType "article" @default.