Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386825770> ?p ?o ?g. }
- W4386825770 abstract "Abstract With the need for psychological help long exceeding the supply, finding ways of scaling, and better allocating mental health support is a necessity. This paper contributes by investigating how to best predict intervention dropout and failure to allow for a need-based adaptation of treatment. We systematically compare the predictive power of different text representation methods (metadata, TF-IDF, sentiment and topic analysis, and word embeddings) in combination with supplementary numerical inputs (socio-demographic, evaluation, and closed-question data). Additionally, we address the research gap of which ML model types — ranging from linear to sophisticated deep learning models — are best suited for different features and outcome variables. To this end, we analyze nearly 16.000 open-text answers from 849 German-speaking users in a Digital Mental Health Intervention (DMHI) for stress. Our research proves that — contrary to previous findings — there is great promise in using neural network approaches on DMHI text data. We propose a task-specific LSTM-based model architecture to tackle the challenge of long input sequences and thereby demonstrate the potential of word embeddings (AUC scores of up to 0.7) for predictions in DMHIs. Despite the relatively small data set, sequential deep learning models, on average, outperform simpler features such as metadata and bag-of-words approaches when predicting dropout. The conclusion is that user-generated text of the first two sessions carries predictive power regarding patients’ dropout and intervention failure risk. Furthermore, the match between the sophistication of features and models needs to be closely considered to optimize results, and additional non-text features increase prediction results." @default.
- W4386825770 created "2023-09-19" @default.
- W4386825770 creator A5009517427 @default.
- W4386825770 creator A5032412063 @default.
- W4386825770 creator A5064562343 @default.
- W4386825770 creator A5085924325 @default.
- W4386825770 creator A5088694875 @default.
- W4386825770 date "2023-09-18" @default.
- W4386825770 modified "2023-10-15" @default.
- W4386825770 title "Finding the Best Match — a Case Study on the (Text-)Feature and Model Choice in Digital Mental Health Interventions" @default.
- W4386825770 cites W1835690719 @default.
- W4386825770 cites W1970246626 @default.
- W4386825770 cites W1976808738 @default.
- W4386825770 cites W1991904374 @default.
- W4386825770 cites W1996299251 @default.
- W4386825770 cites W2002817157 @default.
- W4386825770 cites W2008821255 @default.
- W4386825770 cites W2031201873 @default.
- W4386825770 cites W2037577652 @default.
- W4386825770 cites W2061125915 @default.
- W4386825770 cites W2064675550 @default.
- W4386825770 cites W2068258965 @default.
- W4386825770 cites W2070902649 @default.
- W4386825770 cites W2087089708 @default.
- W4386825770 cites W2113669296 @default.
- W4386825770 cites W2131774270 @default.
- W4386825770 cites W2133074847 @default.
- W4386825770 cites W2137942961 @default.
- W4386825770 cites W2144211451 @default.
- W4386825770 cites W2148143831 @default.
- W4386825770 cites W2155653793 @default.
- W4386825770 cites W2158939484 @default.
- W4386825770 cites W2168844630 @default.
- W4386825770 cites W2255927482 @default.
- W4386825770 cites W2276981644 @default.
- W4386825770 cites W2320850623 @default.
- W4386825770 cites W2462644484 @default.
- W4386825770 cites W2491831709 @default.
- W4386825770 cites W2493916176 @default.
- W4386825770 cites W2510364177 @default.
- W4386825770 cites W2525381941 @default.
- W4386825770 cites W2556468274 @default.
- W4386825770 cites W2582664174 @default.
- W4386825770 cites W2589092816 @default.
- W4386825770 cites W2739036537 @default.
- W4386825770 cites W2752234714 @default.
- W4386825770 cites W2781166262 @default.
- W4386825770 cites W2789246964 @default.
- W4386825770 cites W2795715081 @default.
- W4386825770 cites W2797817943 @default.
- W4386825770 cites W2809135251 @default.
- W4386825770 cites W2888109941 @default.
- W4386825770 cites W2911378264 @default.
- W4386825770 cites W2912581524 @default.
- W4386825770 cites W2944241516 @default.
- W4386825770 cites W2951525837 @default.
- W4386825770 cites W2955071302 @default.
- W4386825770 cites W2963023579 @default.
- W4386825770 cites W2963341956 @default.
- W4386825770 cites W2969401291 @default.
- W4386825770 cites W2971777830 @default.
- W4386825770 cites W2981658599 @default.
- W4386825770 cites W2985217336 @default.
- W4386825770 cites W3007095655 @default.
- W4386825770 cites W3018743165 @default.
- W4386825770 cites W3026847321 @default.
- W4386825770 cites W3033643657 @default.
- W4386825770 cites W3035378033 @default.
- W4386825770 cites W3042986702 @default.
- W4386825770 cites W3089862415 @default.
- W4386825770 cites W3097807896 @default.
- W4386825770 cites W3102476541 @default.
- W4386825770 cites W3127157950 @default.
- W4386825770 cites W3152597481 @default.
- W4386825770 cites W3160467094 @default.
- W4386825770 cites W3160472710 @default.
- W4386825770 cites W3163849331 @default.
- W4386825770 cites W3165510970 @default.
- W4386825770 cites W3170940710 @default.
- W4386825770 cites W3203310594 @default.
- W4386825770 cites W3205128576 @default.
- W4386825770 cites W3209409148 @default.
- W4386825770 cites W3213740945 @default.
- W4386825770 cites W4200015986 @default.
- W4386825770 cites W4211075414 @default.
- W4386825770 cites W4213206766 @default.
- W4386825770 cites W4224028562 @default.
- W4386825770 cites W4235813114 @default.
- W4386825770 cites W4239510810 @default.
- W4386825770 cites W4244895750 @default.
- W4386825770 cites W4293200757 @default.
- W4386825770 doi "https://doi.org/10.1007/s41666-023-00148-z" @default.
- W4386825770 hasPublicationYear "2023" @default.
- W4386825770 type Work @default.
- W4386825770 citedByCount "0" @default.
- W4386825770 crossrefType "journal-article" @default.
- W4386825770 hasAuthorship W4386825770A5009517427 @default.
- W4386825770 hasAuthorship W4386825770A5032412063 @default.
- W4386825770 hasAuthorship W4386825770A5064562343 @default.
- W4386825770 hasAuthorship W4386825770A5085924325 @default.