Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386826462> ?p ?o ?g. }
- W4386826462 endingPage "102972" @default.
- W4386826462 startingPage "102972" @default.
- W4386826462 abstract "By focusing on metabolic and morphological tissue properties respectively, FluoroDeoxyGlucose (FDG)-Positron Emission Tomography (PET) and Computed Tomography (CT) modalities include complementary and synergistic information for cancerous lesion delineation and characterization (e.g. for outcome prediction), in addition to usual clinical variables. This is especially true in Head and Neck Cancer (HNC). The goal of the HEad and neCK TumOR segmentation and outcome prediction (HECKTOR) challenge was to develop and compare modern image analysis methods to best extract and leverage this information automatically. We present here the post-analysis of HECKTOR 2nd edition, at the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2021. The scope of the challenge was substantially expanded compared to the first edition, by providing a larger population (adding patients from a new clinical center) and proposing an additional task to the challengers, namely the prediction of Progression-Free Survival (PFS). To this end, the participants were given access to a training set of 224 cases from 5 different centers, each with a pre-treatment FDG-PET/CT scan and clinical variables. Their methods were subsequently evaluated on a held-out test set of 101 cases from two centers. For the segmentation task (Task 1), the ranking was based on a Borda counting of their ranks according to two metrics: mean Dice Similarity Coefficient (DSC) and median Hausdorff Distance at 95th percentile (HD95). For the PFS prediction task, challengers could use the tumor contours provided by experts (Task 3) or rely on their own (Task 2). The ranking was obtained according to the Concordance index (C-index) calculated on the predicted risk scores. A total of 103 teams registered for the challenge, for a total of 448 submissions and 29 papers. The best method in the segmentation task obtained an average DSC of 0.759, and the best predictions of PFS obtained a C-index of 0.717 (without relying on the provided contours) and 0.698 (using the expert contours). An interesting finding was that best PFS predictions were reached by relying on DL approaches (with or without explicit tumor segmentation, 4 out of the 5 best ranked) compared to standard radiomics methods using handcrafted features extracted from delineated tumors, and by exploiting alternative tumor contours (automated and/or larger volumes encompassing surrounding tissues) rather than relying on the expert contours. This second edition of the challenge confirmed the promising performance of fully automated primary tumor delineation in PET/CT images of HNC patients, although there is still a margin for improvement in some difficult cases. For the first time, the prediction of outcome was also addressed and the best methods reached relatively good performance (C-index above 0.7). Both results constitute another step forward toward large-scale outcome prediction studies in HNC." @default.
- W4386826462 created "2023-09-19" @default.
- W4386826462 creator A5000806340 @default.
- W4386826462 creator A5007157109 @default.
- W4386826462 creator A5008737367 @default.
- W4386826462 creator A5010776501 @default.
- W4386826462 creator A5017138072 @default.
- W4386826462 creator A5019591142 @default.
- W4386826462 creator A5033126601 @default.
- W4386826462 creator A5034491745 @default.
- W4386826462 creator A5043355848 @default.
- W4386826462 creator A5044303463 @default.
- W4386826462 creator A5082810931 @default.
- W4386826462 creator A5084710251 @default.
- W4386826462 date "2023-12-01" @default.
- W4386826462 modified "2023-10-11" @default.
- W4386826462 title "Automatic Head and Neck Tumor segmentation and outcome prediction relying on FDG-PET/CT images: Findings from the second edition of the HECKTOR challenge" @default.
- W4386826462 cites W1641498739 @default.
- W4386826462 cites W1967362871 @default.
- W4386826462 cites W2107665951 @default.
- W4386826462 cites W2120254749 @default.
- W4386826462 cites W2128718068 @default.
- W4386826462 cites W2128739912 @default.
- W4386826462 cites W2142457016 @default.
- W4386826462 cites W2148347694 @default.
- W4386826462 cites W2155263737 @default.
- W4386826462 cites W2156835537 @default.
- W4386826462 cites W2174661749 @default.
- W4386826462 cites W2513587258 @default.
- W4386826462 cites W2594164447 @default.
- W4386826462 cites W2600642189 @default.
- W4386826462 cites W2752782242 @default.
- W4386826462 cites W2763355946 @default.
- W4386826462 cites W2773727367 @default.
- W4386826462 cites W2887058339 @default.
- W4386826462 cites W2888383922 @default.
- W4386826462 cites W2902154261 @default.
- W4386826462 cites W2923027365 @default.
- W4386826462 cites W2949676527 @default.
- W4386826462 cites W2963351448 @default.
- W4386826462 cites W3010245316 @default.
- W4386826462 cites W3080245372 @default.
- W4386826462 cites W3093969556 @default.
- W4386826462 cites W3112701542 @default.
- W4386826462 cites W3119499904 @default.
- W4386826462 cites W3131280251 @default.
- W4386826462 cites W3138516171 @default.
- W4386826462 cites W3214412294 @default.
- W4386826462 cites W4200066891 @default.
- W4386826462 cites W4207071932 @default.
- W4386826462 cites W4212875960 @default.
- W4386826462 cites W4220776107 @default.
- W4386826462 cites W4225642163 @default.
- W4386826462 cites W4225663388 @default.
- W4386826462 cites W4225998868 @default.
- W4386826462 cites W4226003906 @default.
- W4386826462 cites W4226144955 @default.
- W4386826462 cites W4226174422 @default.
- W4386826462 cites W4226175101 @default.
- W4386826462 cites W4226225263 @default.
- W4386826462 cites W4226337630 @default.
- W4386826462 cites W4226375111 @default.
- W4386826462 cites W4291470834 @default.
- W4386826462 cites W4294975111 @default.
- W4386826462 cites W4312818289 @default.
- W4386826462 cites W4313004789 @default.
- W4386826462 cites W4317639934 @default.
- W4386826462 doi "https://doi.org/10.1016/j.media.2023.102972" @default.
- W4386826462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37742374" @default.
- W4386826462 hasPublicationYear "2023" @default.
- W4386826462 type Work @default.
- W4386826462 citedByCount "0" @default.
- W4386826462 crossrefType "journal-article" @default.
- W4386826462 hasAuthorship W4386826462A5000806340 @default.
- W4386826462 hasAuthorship W4386826462A5007157109 @default.
- W4386826462 hasAuthorship W4386826462A5008737367 @default.
- W4386826462 hasAuthorship W4386826462A5010776501 @default.
- W4386826462 hasAuthorship W4386826462A5017138072 @default.
- W4386826462 hasAuthorship W4386826462A5019591142 @default.
- W4386826462 hasAuthorship W4386826462A5033126601 @default.
- W4386826462 hasAuthorship W4386826462A5034491745 @default.
- W4386826462 hasAuthorship W4386826462A5043355848 @default.
- W4386826462 hasAuthorship W4386826462A5044303463 @default.
- W4386826462 hasAuthorship W4386826462A5082810931 @default.
- W4386826462 hasAuthorship W4386826462A5084710251 @default.
- W4386826462 hasBestOaLocation W43868264621 @default.
- W4386826462 hasConcept C105795698 @default.
- W4386826462 hasConcept C119857082 @default.
- W4386826462 hasConcept C122048520 @default.
- W4386826462 hasConcept C141898687 @default.
- W4386826462 hasConcept C153083717 @default.
- W4386826462 hasConcept C154945302 @default.
- W4386826462 hasConcept C19527891 @default.
- W4386826462 hasConcept C2775842073 @default.
- W4386826462 hasConcept C2908647359 @default.
- W4386826462 hasConcept C2989005 @default.
- W4386826462 hasConcept C33923547 @default.
- W4386826462 hasConcept C41008148 @default.