Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386827209> ?p ?o ?g. }
- W4386827209 endingPage "101133" @default.
- W4386827209 startingPage "101133" @default.
- W4386827209 abstract "This scoping review explores the potential of artificial intelligence (AI) in enhancing the screening, diagnosis, and monitoring of disorders related to body iron levels. A systematic search was performed to identify studies that utilize machine learning in iron-related disorders. The search revealed a wide range of machine learning algorithms used by different studies. Notably, most studies used a single data type. The studies varied in terms of sample sizes, participant ages, and geographical locations. AI's role in quantifying iron concentration is still in its early stages, yet its potential is significant. The question is whether AI-based diagnostic biomarkers can offer innovative approaches for screening, diagnosing, and monitoring of iron overload and anemia." @default.
- W4386827209 created "2023-09-19" @default.
- W4386827209 creator A5020810020 @default.
- W4386827209 creator A5032603175 @default.
- W4386827209 creator A5037651354 @default.
- W4386827209 creator A5040368019 @default.
- W4386827209 creator A5072402135 @default.
- W4386827209 creator A5091064749 @default.
- W4386827209 creator A5092894457 @default.
- W4386827209 creator A5092894458 @default.
- W4386827209 creator A5092894459 @default.
- W4386827209 date "2023-09-01" @default.
- W4386827209 modified "2023-09-29" @default.
- W4386827209 title "Using artificial intelligence to improve body iron quantification: A scoping review" @default.
- W4386827209 cites W1939928680 @default.
- W4386827209 cites W1967657836 @default.
- W4386827209 cites W1981976602 @default.
- W4386827209 cites W2039198845 @default.
- W4386827209 cites W2064939904 @default.
- W4386827209 cites W2084280754 @default.
- W4386827209 cites W2086531744 @default.
- W4386827209 cites W2087476857 @default.
- W4386827209 cites W2132514417 @default.
- W4386827209 cites W2144207984 @default.
- W4386827209 cites W2163472591 @default.
- W4386827209 cites W2170885365 @default.
- W4386827209 cites W2318456157 @default.
- W4386827209 cites W2323675077 @default.
- W4386827209 cites W2465057033 @default.
- W4386827209 cites W2518281738 @default.
- W4386827209 cites W2589779391 @default.
- W4386827209 cites W2604975863 @default.
- W4386827209 cites W2789689570 @default.
- W4386827209 cites W2791205260 @default.
- W4386827209 cites W2982945214 @default.
- W4386827209 cites W2999262601 @default.
- W4386827209 cites W3004363493 @default.
- W4386827209 cites W3024621125 @default.
- W4386827209 cites W3032464132 @default.
- W4386827209 cites W3103002674 @default.
- W4386827209 cites W3109298338 @default.
- W4386827209 cites W3134994883 @default.
- W4386827209 cites W3137743636 @default.
- W4386827209 cites W3152706133 @default.
- W4386827209 cites W3156562468 @default.
- W4386827209 cites W3187992181 @default.
- W4386827209 cites W3203487607 @default.
- W4386827209 cites W3208267473 @default.
- W4386827209 cites W3213647809 @default.
- W4386827209 cites W4210844307 @default.
- W4386827209 cites W4220809680 @default.
- W4386827209 cites W4226338155 @default.
- W4386827209 cites W4280494276 @default.
- W4386827209 cites W4281789584 @default.
- W4386827209 cites W4283028137 @default.
- W4386827209 cites W4283380520 @default.
- W4386827209 cites W4294152288 @default.
- W4386827209 cites W4296197803 @default.
- W4386827209 cites W4306249809 @default.
- W4386827209 cites W4321447289 @default.
- W4386827209 cites W4364379367 @default.
- W4386827209 doi "https://doi.org/10.1016/j.blre.2023.101133" @default.
- W4386827209 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37748945" @default.
- W4386827209 hasPublicationYear "2023" @default.
- W4386827209 type Work @default.
- W4386827209 citedByCount "0" @default.
- W4386827209 crossrefType "journal-article" @default.
- W4386827209 hasAuthorship W4386827209A5020810020 @default.
- W4386827209 hasAuthorship W4386827209A5032603175 @default.
- W4386827209 hasAuthorship W4386827209A5037651354 @default.
- W4386827209 hasAuthorship W4386827209A5040368019 @default.
- W4386827209 hasAuthorship W4386827209A5072402135 @default.
- W4386827209 hasAuthorship W4386827209A5091064749 @default.
- W4386827209 hasAuthorship W4386827209A5092894457 @default.
- W4386827209 hasAuthorship W4386827209A5092894458 @default.
- W4386827209 hasAuthorship W4386827209A5092894459 @default.
- W4386827209 hasBestOaLocation W43868272091 @default.
- W4386827209 hasConcept C118552586 @default.
- W4386827209 hasConcept C119857082 @default.
- W4386827209 hasConcept C154945302 @default.
- W4386827209 hasConcept C2777417653 @default.
- W4386827209 hasConcept C2778248108 @default.
- W4386827209 hasConcept C3019673199 @default.
- W4386827209 hasConcept C41008148 @default.
- W4386827209 hasConcept C71924100 @default.
- W4386827209 hasConceptScore W4386827209C118552586 @default.
- W4386827209 hasConceptScore W4386827209C119857082 @default.
- W4386827209 hasConceptScore W4386827209C154945302 @default.
- W4386827209 hasConceptScore W4386827209C2777417653 @default.
- W4386827209 hasConceptScore W4386827209C2778248108 @default.
- W4386827209 hasConceptScore W4386827209C3019673199 @default.
- W4386827209 hasConceptScore W4386827209C41008148 @default.
- W4386827209 hasConceptScore W4386827209C71924100 @default.
- W4386827209 hasFunder F4320334468 @default.
- W4386827209 hasLocation W43868272091 @default.
- W4386827209 hasLocation W43868272092 @default.
- W4386827209 hasOpenAccess W4386827209 @default.
- W4386827209 hasPrimaryLocation W43868272091 @default.