Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386827758> ?p ?o ?g. }
- W4386827758 endingPage "107488" @default.
- W4386827758 startingPage "107488" @default.
- W4386827758 abstract "The Steady State Visual Evoked Potential (SSVEP) is a widely used component in BCIs due to its high noise resistance and low equipment requirements. Recently, a novel SSVEP-based paradigm has been introduced for direction detection, in which, unlike the common SSVEP paradigms that use several frequency stimuli, only one flickering stimulus is used and it makes direction detection very challenging. So far, only the CCA method has been used for direction detection using SSVEP component analysis. Since Canonical Correlation Analysis (CCA) has some limitations, a Task-Related Component Analysis (TRCA) based method has been introduced for feature extraction to improve the direction detection performance. Although these methods have been proven efficient, they do not utilize the latent frequency information in the EEG signal. Therefore, the performance of direction detection using SSVEP component analysis is still suboptimal. For further improvement, the TRCA-based algorithm is enhanced by incorporating frequency information and introducing Spectrum-Enhanced TRCA (SE-TRCA). SE-TRCA method can utilize frequency information in conjunction with spatial information by concatenating the EEG signal and its shifted version. Accordingly, the obtained spatio-spectral filters perform as a Finite Impulse Response (FIR) filter. To evaluate the proposed SE-TRCA method, two different sorts of datasets (1) a hybrid BCI dataset (including SSVEP component for direction detection) and (2) a pure benchmark SSVEP dataset (including SSVEP component for frequency detection) have been used. Our experiments showed that the accuracy of direction detection using the proposed SE-TRCA and TRCA approaches compared to CCA-based approach have been increased by 23.35% and 28.24%, respectively. Furthermore, the accuracy of character recognition obtained from integrating P300 and SSVEP components in CCA, TRCA, and SETRCA approaches are 54.01%, 56.02%, and 58.56%, on the hybrid dataset, respectively. The evaluation of the SE-TRCA method on the benchmark SSVEP dataset demonstrates that the SE-TRCA method outperforms both CCA and TRCA, particularly regarding frequency detection accuracy. In this specific dataset, the SE-TRCA method achieved an impressive frequency detection accuracy of 98.19% for a 3-s signal, surpassing the accuracies of TRCA and CCA, which were 97.91% and 90.47%, respectively. These results demonstrated that the TRCA-based approach is more efficient than the CCA approach to extracting spatial filters. Moreover, SE-TRCA, extracting both Spectral and spatial information from the EEG signal, can capture more discriminative features from the SSVEP component and increase the accuracy of classification. The results of this study emphasize the effectiveness of the proposed SE-TRCA approach across different SSVEP paradigms and tasks. These findings provide strong evidence for the method's ability to generalize well in SSVEP analysis." @default.
- W4386827758 created "2023-09-19" @default.
- W4386827758 creator A5001309013 @default.
- W4386827758 creator A5065080677 @default.
- W4386827758 creator A5065304359 @default.
- W4386827758 creator A5079922796 @default.
- W4386827758 date "2023-11-01" @default.
- W4386827758 modified "2023-10-16" @default.
- W4386827758 title "Spectrum-Enhanced TRCA (SE-TRCA): A novel approach for direction detection in SSVEP-based BCI" @default.
- W4386827758 cites W1967545169 @default.
- W4386827758 cites W1971492907 @default.
- W4386827758 cites W1985638190 @default.
- W4386827758 cites W1992305955 @default.
- W4386827758 cites W1994855515 @default.
- W4386827758 cites W1998344981 @default.
- W4386827758 cites W2011823558 @default.
- W4386827758 cites W2041998778 @default.
- W4386827758 cites W2046143942 @default.
- W4386827758 cites W2068562173 @default.
- W4386827758 cites W2079223014 @default.
- W4386827758 cites W2081020044 @default.
- W4386827758 cites W2098100592 @default.
- W4386827758 cites W2099323129 @default.
- W4386827758 cites W2105478324 @default.
- W4386827758 cites W2112677719 @default.
- W4386827758 cites W2120149678 @default.
- W4386827758 cites W2125260508 @default.
- W4386827758 cites W2131321253 @default.
- W4386827758 cites W2135961695 @default.
- W4386827758 cites W2143183535 @default.
- W4386827758 cites W2148270649 @default.
- W4386827758 cites W2153635508 @default.
- W4386827758 cites W2158655338 @default.
- W4386827758 cites W2161979817 @default.
- W4386827758 cites W2165892205 @default.
- W4386827758 cites W2553904372 @default.
- W4386827758 cites W2605492512 @default.
- W4386827758 cites W2609771872 @default.
- W4386827758 cites W2616910298 @default.
- W4386827758 cites W2621169658 @default.
- W4386827758 cites W2738926490 @default.
- W4386827758 cites W2742652780 @default.
- W4386827758 cites W2749714969 @default.
- W4386827758 cites W2793531120 @default.
- W4386827758 cites W2800457852 @default.
- W4386827758 cites W2898157384 @default.
- W4386827758 cites W2939361299 @default.
- W4386827758 cites W2963166102 @default.
- W4386827758 cites W2971199229 @default.
- W4386827758 cites W2991224771 @default.
- W4386827758 cites W3002156589 @default.
- W4386827758 cites W3007062513 @default.
- W4386827758 cites W3008442772 @default.
- W4386827758 cites W3008504731 @default.
- W4386827758 cites W3026265732 @default.
- W4386827758 cites W3103655579 @default.
- W4386827758 cites W3149679044 @default.
- W4386827758 cites W4205875334 @default.
- W4386827758 cites W4212853704 @default.
- W4386827758 cites W4285262528 @default.
- W4386827758 cites W4304783939 @default.
- W4386827758 doi "https://doi.org/10.1016/j.compbiomed.2023.107488" @default.
- W4386827758 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37778215" @default.
- W4386827758 hasPublicationYear "2023" @default.
- W4386827758 type Work @default.
- W4386827758 citedByCount "0" @default.
- W4386827758 crossrefType "journal-article" @default.
- W4386827758 hasAuthorship W4386827758A5001309013 @default.
- W4386827758 hasAuthorship W4386827758A5065080677 @default.
- W4386827758 hasAuthorship W4386827758A5065304359 @default.
- W4386827758 hasAuthorship W4386827758A5079922796 @default.
- W4386827758 hasConcept C118552586 @default.
- W4386827758 hasConcept C153180895 @default.
- W4386827758 hasConcept C153874254 @default.
- W4386827758 hasConcept C154945302 @default.
- W4386827758 hasConcept C15744967 @default.
- W4386827758 hasConcept C173201364 @default.
- W4386827758 hasConcept C27438332 @default.
- W4386827758 hasConcept C2780692498 @default.
- W4386827758 hasConcept C28490314 @default.
- W4386827758 hasConcept C41008148 @default.
- W4386827758 hasConcept C522805319 @default.
- W4386827758 hasConcept C52622490 @default.
- W4386827758 hasConceptScore W4386827758C118552586 @default.
- W4386827758 hasConceptScore W4386827758C153180895 @default.
- W4386827758 hasConceptScore W4386827758C153874254 @default.
- W4386827758 hasConceptScore W4386827758C154945302 @default.
- W4386827758 hasConceptScore W4386827758C15744967 @default.
- W4386827758 hasConceptScore W4386827758C173201364 @default.
- W4386827758 hasConceptScore W4386827758C27438332 @default.
- W4386827758 hasConceptScore W4386827758C2780692498 @default.
- W4386827758 hasConceptScore W4386827758C28490314 @default.
- W4386827758 hasConceptScore W4386827758C41008148 @default.
- W4386827758 hasConceptScore W4386827758C522805319 @default.
- W4386827758 hasConceptScore W4386827758C52622490 @default.
- W4386827758 hasLocation W43868277581 @default.
- W4386827758 hasLocation W43868277582 @default.
- W4386827758 hasOpenAccess W4386827758 @default.