Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386828704> ?p ?o ?g. }
- W4386828704 abstract "Background Prediction of high-risk events in mental disorder patients is crucial. In our previous study, we developed a deep learning model: DeepBiomarker by using electronic medical records (EMR) to predict suicide related event (SRE) risk in post-traumatic stress disorder (PTSD) patients. Methods We applied DeepBiomarker2 through data integration of multimodal information: lab test, medication, co-morbidities, and social determinants of health. We analyzed EMRs of 5,565 patients from University of Pittsburgh Medical Center with a diagnosis of PTSD and alcohol use disorder (AUD) on risk of developing an adverse event (opioid use disorder, SREs, depression and death). Results DeepBiomarker2 predicted whether a PTSD + AUD patient will have a diagnosis of any adverse events (SREs, opioid use disorder, depression, death) within 3 months with area under the receiver operator curve (AUROC) of 0.94. We found piroxicam, vilazodone, dronabinol, tenofovir, suvorexant, empagliflozin, famciclovir, veramyst, amantadine, sulfasalazine, and lamivudine to have potential to reduce risk. Conclusions DeepBiomarker2 can predict multiple adverse event risk with high accuracy and identify potential risk and beneficial factors. Our results offer suggestions for personalized interventions in a variety of clinical and diverse populations." @default.
- W4386828704 created "2023-09-19" @default.
- W4386828704 creator A5006944675 @default.
- W4386828704 creator A5020691605 @default.
- W4386828704 creator A5037889949 @default.
- W4386828704 creator A5047350979 @default.
- W4386828704 creator A5051015778 @default.
- W4386828704 creator A5071214414 @default.
- W4386828704 creator A5072244531 @default.
- W4386828704 creator A5084605837 @default.
- W4386828704 creator A5086417145 @default.
- W4386828704 date "2023-09-18" @default.
- W4386828704 modified "2023-10-05" @default.
- W4386828704 title "Prediction of Adverse Events Risk in Patients with Comorbid Post- Traumatic Stress Disorder and Alcohol Use Disorder Using Electronic Medical Records by Deep Learning Models" @default.
- W4386828704 cites W1773909344 @default.
- W4386828704 cites W1963224463 @default.
- W4386828704 cites W1977073959 @default.
- W4386828704 cites W1979308736 @default.
- W4386828704 cites W1980152507 @default.
- W4386828704 cites W1982738390 @default.
- W4386828704 cites W1985193354 @default.
- W4386828704 cites W1987988504 @default.
- W4386828704 cites W1990434571 @default.
- W4386828704 cites W1997288430 @default.
- W4386828704 cites W2000180280 @default.
- W4386828704 cites W2009615575 @default.
- W4386828704 cites W2016188383 @default.
- W4386828704 cites W2034294713 @default.
- W4386828704 cites W2035706035 @default.
- W4386828704 cites W2043875131 @default.
- W4386828704 cites W2048076952 @default.
- W4386828704 cites W2060604221 @default.
- W4386828704 cites W2063694580 @default.
- W4386828704 cites W2064675550 @default.
- W4386828704 cites W2074698946 @default.
- W4386828704 cites W2075103663 @default.
- W4386828704 cites W2122589799 @default.
- W4386828704 cites W2137157804 @default.
- W4386828704 cites W2138744406 @default.
- W4386828704 cites W2139415488 @default.
- W4386828704 cites W2157757373 @default.
- W4386828704 cites W2158906680 @default.
- W4386828704 cites W2164568439 @default.
- W4386828704 cites W2168451060 @default.
- W4386828704 cites W2169715537 @default.
- W4386828704 cites W2287058651 @default.
- W4386828704 cites W2412281345 @default.
- W4386828704 cites W2491859250 @default.
- W4386828704 cites W2587991106 @default.
- W4386828704 cites W2606140345 @default.
- W4386828704 cites W2625625371 @default.
- W4386828704 cites W2749762523 @default.
- W4386828704 cites W2755265497 @default.
- W4386828704 cites W2800034032 @default.
- W4386828704 cites W2804506109 @default.
- W4386828704 cites W2884543279 @default.
- W4386828704 cites W2898591306 @default.
- W4386828704 cites W2905463189 @default.
- W4386828704 cites W2906735570 @default.
- W4386828704 cites W2914588366 @default.
- W4386828704 cites W2945119989 @default.
- W4386828704 cites W2950297440 @default.
- W4386828704 cites W2966375978 @default.
- W4386828704 cites W2985070358 @default.
- W4386828704 cites W3003758849 @default.
- W4386828704 cites W3042639876 @default.
- W4386828704 cites W3083921318 @default.
- W4386828704 cites W3092564365 @default.
- W4386828704 cites W3125387008 @default.
- W4386828704 cites W3126462292 @default.
- W4386828704 cites W3131115190 @default.
- W4386828704 cites W3131397527 @default.
- W4386828704 cites W3179479229 @default.
- W4386828704 cites W3206349490 @default.
- W4386828704 cites W326147307 @default.
- W4386828704 cites W4220974738 @default.
- W4386828704 cites W4223523857 @default.
- W4386828704 cites W4226486452 @default.
- W4386828704 cites W4280513899 @default.
- W4386828704 cites W4281906670 @default.
- W4386828704 cites W4291747143 @default.
- W4386828704 cites W4292600371 @default.
- W4386828704 cites W4296330866 @default.
- W4386828704 cites W4318542532 @default.
- W4386828704 cites W4324045920 @default.
- W4386828704 cites W581977681 @default.
- W4386828704 cites W58520962 @default.
- W4386828704 doi "https://doi.org/10.21203/rs.3.rs-3299369/v1" @default.
- W4386828704 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37790550" @default.
- W4386828704 hasPublicationYear "2023" @default.
- W4386828704 type Work @default.
- W4386828704 citedByCount "0" @default.
- W4386828704 crossrefType "posted-content" @default.
- W4386828704 hasAuthorship W4386828704A5006944675 @default.
- W4386828704 hasAuthorship W4386828704A5020691605 @default.
- W4386828704 hasAuthorship W4386828704A5037889949 @default.
- W4386828704 hasAuthorship W4386828704A5047350979 @default.
- W4386828704 hasAuthorship W4386828704A5051015778 @default.
- W4386828704 hasAuthorship W4386828704A5071214414 @default.
- W4386828704 hasAuthorship W4386828704A5072244531 @default.