Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386829219> ?p ?o ?g. }
- W4386829219 abstract "<sec> <title>BACKGROUND</title> The use of artificial intelligence (AI) in decision-making around knee replacement surgery is increasing, and this technology holds promise to improve the prediction of patient outcomes. Ambiguity surrounds the definition of AI, and there are mixed views on its application in clinical settings. </sec> <sec> <title>OBJECTIVE</title> In this study, we aimed to explore the understanding and attitudes of patients who underwent knee replacement surgery regarding AI in the context of risk prediction for shared clinical decision-making. </sec> <sec> <title>METHODS</title> This qualitative study involved patients who underwent knee replacement surgery at a tertiary referral center for joint replacement surgery. The participants were selected based on their age and sex. Semistructured interviews explored the participants’ understanding of AI and their opinions on its use in shared clinical decision-making. Data collection and reflexive thematic analyses were conducted concurrently. Recruitment continued until thematic saturation was achieved. </sec> <sec> <title>RESULTS</title> Thematic saturation was achieved with 19 interviews and confirmed with 1 additional interview, resulting in 20 participants being interviewed (female participants: n=11, 55%; male participants: n=9, 45%; median age: 66 years). A total of 11 (55%) participants had a substantial postoperative complication. Three themes captured the participants’ understanding of AI and their perceptions of its use in shared clinical decision-making. The theme <i>Expectations</i> captured the participants’ views of themselves as individuals with the right to self-determination as they sought therapeutic solutions tailored to their circumstances, needs, and desires, including whether to use AI at all. The theme <i>Empowerment</i> highlighted the potential of AI to enable patients to develop realistic expectations and equip them with personalized risk information to discuss in shared decision-making conversations with the surgeon. The theme <i>Partnership</i> captured the importance of symbiosis between AI and clinicians because AI has varied levels of interpretability and understanding of human emotions and empathy. </sec> <sec> <title>CONCLUSIONS</title> Patients who underwent knee replacement surgery in this study had varied levels of familiarity with AI and diverse conceptualizations of its definitions and capabilities. Educating patients about AI through nontechnical explanations and illustrative scenarios could help inform their decision to use it for risk prediction in the shared decision-making process with their surgeon. These findings could be used in the process of developing a questionnaire to ascertain the views of patients undergoing knee replacement surgery on the acceptability of AI in shared clinical decision-making. Future work could investigate the accuracy of this patient group’s understanding of AI, beyond their familiarity with it, and how this influences their acceptance of its use. Surgeons may play a key role in finding a place for AI in the clinical setting as the uptake of this technology in health care continues to grow. </sec>" @default.
- W4386829219 created "2023-09-19" @default.
- W4386829219 creator A5001114296 @default.
- W4386829219 creator A5003065050 @default.
- W4386829219 creator A5011187642 @default.
- W4386829219 creator A5018433922 @default.
- W4386829219 creator A5022113203 @default.
- W4386829219 creator A5033110141 @default.
- W4386829219 creator A5057159907 @default.
- W4386829219 date "2022-10-18" @default.
- W4386829219 modified "2023-09-30" @default.
- W4386829219 title "Patients’ Views on AI for Risk Prediction in Shared Decision-Making for Knee Replacement Surgery: Qualitative Interview Study (Preprint)" @default.
- W4386829219 cites W1984211042 @default.
- W4386829219 cites W2015291798 @default.
- W4386829219 cites W2052442847 @default.
- W4386829219 cites W2100207436 @default.
- W4386829219 cites W2113768457 @default.
- W4386829219 cites W2138664283 @default.
- W4386829219 cites W2177469448 @default.
- W4386829219 cites W2282821441 @default.
- W4386829219 cites W2479769766 @default.
- W4386829219 cites W2517739801 @default.
- W4386829219 cites W2524597629 @default.
- W4386829219 cites W2769961594 @default.
- W4386829219 cites W2802600827 @default.
- W4386829219 cites W2900117578 @default.
- W4386829219 cites W2906295032 @default.
- W4386829219 cites W2911296969 @default.
- W4386829219 cites W2913777302 @default.
- W4386829219 cites W2940562610 @default.
- W4386829219 cites W2941496369 @default.
- W4386829219 cites W2942858056 @default.
- W4386829219 cites W2946141304 @default.
- W4386829219 cites W2950504429 @default.
- W4386829219 cites W2952429584 @default.
- W4386829219 cites W2967885471 @default.
- W4386829219 cites W2969468266 @default.
- W4386829219 cites W2973001311 @default.
- W4386829219 cites W2994823183 @default.
- W4386829219 cites W2999885075 @default.
- W4386829219 cites W3004889343 @default.
- W4386829219 cites W3007819350 @default.
- W4386829219 cites W3010818375 @default.
- W4386829219 cites W3012449740 @default.
- W4386829219 cites W3012511890 @default.
- W4386829219 cites W3015682012 @default.
- W4386829219 cites W3017746504 @default.
- W4386829219 cites W3038139858 @default.
- W4386829219 cites W3095912373 @default.
- W4386829219 cites W3110169284 @default.
- W4386829219 cites W3110784362 @default.
- W4386829219 cites W3125689228 @default.
- W4386829219 cites W3170726633 @default.
- W4386829219 cites W3206074437 @default.
- W4386829219 cites W3215576526 @default.
- W4386829219 cites W4200048410 @default.
- W4386829219 cites W4200394808 @default.
- W4386829219 cites W4211222176 @default.
- W4386829219 cites W4214873977 @default.
- W4386829219 cites W4252343033 @default.
- W4386829219 cites W4285817122 @default.
- W4386829219 doi "https://doi.org/10.2196/preprints.43632" @default.
- W4386829219 hasPublicationYear "2022" @default.
- W4386829219 type Work @default.
- W4386829219 citedByCount "0" @default.
- W4386829219 crossrefType "posted-content" @default.
- W4386829219 hasAuthorship W4386829219A5001114296 @default.
- W4386829219 hasAuthorship W4386829219A5003065050 @default.
- W4386829219 hasAuthorship W4386829219A5011187642 @default.
- W4386829219 hasAuthorship W4386829219A5018433922 @default.
- W4386829219 hasAuthorship W4386829219A5022113203 @default.
- W4386829219 hasAuthorship W4386829219A5033110141 @default.
- W4386829219 hasAuthorship W4386829219A5057159907 @default.
- W4386829219 hasConcept C136764020 @default.
- W4386829219 hasConcept C141071460 @default.
- W4386829219 hasConcept C144024400 @default.
- W4386829219 hasConcept C151730666 @default.
- W4386829219 hasConcept C15744967 @default.
- W4386829219 hasConcept C1862650 @default.
- W4386829219 hasConcept C190248442 @default.
- W4386829219 hasConcept C2776135927 @default.
- W4386829219 hasConcept C2778104916 @default.
- W4386829219 hasConcept C2779343474 @default.
- W4386829219 hasConcept C36289849 @default.
- W4386829219 hasConcept C41008148 @default.
- W4386829219 hasConcept C43169469 @default.
- W4386829219 hasConcept C512399662 @default.
- W4386829219 hasConcept C68312169 @default.
- W4386829219 hasConcept C71924100 @default.
- W4386829219 hasConcept C74196892 @default.
- W4386829219 hasConcept C86803240 @default.
- W4386829219 hasConceptScore W4386829219C136764020 @default.
- W4386829219 hasConceptScore W4386829219C141071460 @default.
- W4386829219 hasConceptScore W4386829219C144024400 @default.
- W4386829219 hasConceptScore W4386829219C151730666 @default.
- W4386829219 hasConceptScore W4386829219C15744967 @default.
- W4386829219 hasConceptScore W4386829219C1862650 @default.
- W4386829219 hasConceptScore W4386829219C190248442 @default.
- W4386829219 hasConceptScore W4386829219C2776135927 @default.
- W4386829219 hasConceptScore W4386829219C2778104916 @default.