Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386830317> ?p ?o ?g. }
- W4386830317 abstract "Abstract Background Dental plaque microbes play a key role in the development of periodontal disease. Numerous high-throughput sequencing studies have generated understanding of the bacterial species associated with both canine periodontal health and disease. Opportunities therefore exist to utilise these bacterial biomarkers to improve disease diagnosis in conscious-based veterinary oral health checks. Here, we demonstrate that molecular techniques, specifically quantitative polymerase chain reaction (qPCR) can be utilised for the detection of microbial biomarkers associated with canine periodontal health and disease. Results Over 40 qPCR assays targeting single microbial species associated with canine periodontal health, gingivitis and early periodontitis were developed and validated. These were used to quantify levels of the respective taxa in canine subgingival plaque samples collected across periodontal health (PD0), gingivitis (PD1) and early periodontitis (PD2). When qPCR outputs were compared to the corresponding high-throughput sequencing data there were strong correlations, including a periodontal health associated taxa, Capnocytophaga sp. COT-339 ( r s =0.805), and two periodontal disease associated taxa, Peptostreptococcaceae XI [G-4] sp. COT-019 ( r s =0.902) and Clostridiales sp. COT-028 ( r s =0.802). The best performing models, from five machine learning approaches applied to the qPCR data for these taxa, estimated 85.7% sensitivity and 27.5% specificity for Capnocytophaga sp. COT-339, 74.3% sensitivity and 67.5% specificity for Peptostreptococcaceae XI [G-4] sp. COT-019, and 60.0% sensitivity and 80.0% specificity for Clostridiales sp. COT-028. Conclusions A qPCR-based approach is an accurate, sensitive, and cost-effective method for detection of microbial biomarkers associated with periodontal health and disease. Taken together, the correlation between qPCR and high-throughput sequencing outputs, and early accuracy insights, indicate the strategy offers a prospective route to the development of diagnostic tools for canine periodontal disease." @default.
- W4386830317 created "2023-09-19" @default.
- W4386830317 creator A5006418085 @default.
- W4386830317 creator A5011340902 @default.
- W4386830317 creator A5020301573 @default.
- W4386830317 creator A5021688666 @default.
- W4386830317 creator A5061436482 @default.
- W4386830317 creator A5090938675 @default.
- W4386830317 date "2023-09-18" @default.
- W4386830317 modified "2023-09-28" @default.
- W4386830317 title "Developing diagnostic tools for canine periodontitis: combining molecular techniques and machine learning models" @default.
- W4386830317 cites W125443610 @default.
- W4386830317 cites W139164365 @default.
- W4386830317 cites W1417017839 @default.
- W4386830317 cites W1514909289 @default.
- W4386830317 cites W1523682320 @default.
- W4386830317 cites W1978239142 @default.
- W4386830317 cites W1994604638 @default.
- W4386830317 cites W2014425624 @default.
- W4386830317 cites W2028292261 @default.
- W4386830317 cites W2032249294 @default.
- W4386830317 cites W2034512485 @default.
- W4386830317 cites W2036647435 @default.
- W4386830317 cites W2049556417 @default.
- W4386830317 cites W2066454593 @default.
- W4386830317 cites W2080316314 @default.
- W4386830317 cites W2089034600 @default.
- W4386830317 cites W2093085275 @default.
- W4386830317 cites W2124829863 @default.
- W4386830317 cites W2135062400 @default.
- W4386830317 cites W2137281302 @default.
- W4386830317 cites W2151861762 @default.
- W4386830317 cites W2158877985 @default.
- W4386830317 cites W2168420558 @default.
- W4386830317 cites W2224492907 @default.
- W4386830317 cites W2302623013 @default.
- W4386830317 cites W2590658579 @default.
- W4386830317 cites W2593935637 @default.
- W4386830317 cites W2743904196 @default.
- W4386830317 cites W2771096920 @default.
- W4386830317 cites W2808000840 @default.
- W4386830317 cites W2951172187 @default.
- W4386830317 cites W2977461949 @default.
- W4386830317 cites W3087351764 @default.
- W4386830317 cites W3118242873 @default.
- W4386830317 cites W3121849156 @default.
- W4386830317 cites W3138777723 @default.
- W4386830317 cites W3139524553 @default.
- W4386830317 cites W3185083371 @default.
- W4386830317 cites W3204732605 @default.
- W4386830317 cites W3208778910 @default.
- W4386830317 cites W3214986152 @default.
- W4386830317 cites W4200223154 @default.
- W4386830317 cites W4207031420 @default.
- W4386830317 cites W4210611880 @default.
- W4386830317 cites W4210718444 @default.
- W4386830317 cites W4210852288 @default.
- W4386830317 cites W4220814249 @default.
- W4386830317 cites W4220915011 @default.
- W4386830317 cites W4283574835 @default.
- W4386830317 doi "https://doi.org/10.1186/s12917-023-03668-3" @default.
- W4386830317 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37723566" @default.
- W4386830317 hasPublicationYear "2023" @default.
- W4386830317 type Work @default.
- W4386830317 citedByCount "0" @default.
- W4386830317 crossrefType "journal-article" @default.
- W4386830317 hasAuthorship W4386830317A5006418085 @default.
- W4386830317 hasAuthorship W4386830317A5011340902 @default.
- W4386830317 hasAuthorship W4386830317A5020301573 @default.
- W4386830317 hasAuthorship W4386830317A5021688666 @default.
- W4386830317 hasAuthorship W4386830317A5061436482 @default.
- W4386830317 hasAuthorship W4386830317A5090938675 @default.
- W4386830317 hasBestOaLocation W43868303171 @default.
- W4386830317 hasConcept C104317684 @default.
- W4386830317 hasConcept C142724271 @default.
- W4386830317 hasConcept C15151743 @default.
- W4386830317 hasConcept C199343813 @default.
- W4386830317 hasConcept C2778576240 @default.
- W4386830317 hasConcept C2778883934 @default.
- W4386830317 hasConcept C2779134260 @default.
- W4386830317 hasConcept C2780385504 @default.
- W4386830317 hasConcept C2780791200 @default.
- W4386830317 hasConcept C2992452445 @default.
- W4386830317 hasConcept C3018527248 @default.
- W4386830317 hasConcept C49105822 @default.
- W4386830317 hasConcept C523546767 @default.
- W4386830317 hasConcept C54355233 @default.
- W4386830317 hasConcept C71924100 @default.
- W4386830317 hasConcept C86803240 @default.
- W4386830317 hasConceptScore W4386830317C104317684 @default.
- W4386830317 hasConceptScore W4386830317C142724271 @default.
- W4386830317 hasConceptScore W4386830317C15151743 @default.
- W4386830317 hasConceptScore W4386830317C199343813 @default.
- W4386830317 hasConceptScore W4386830317C2778576240 @default.
- W4386830317 hasConceptScore W4386830317C2778883934 @default.
- W4386830317 hasConceptScore W4386830317C2779134260 @default.
- W4386830317 hasConceptScore W4386830317C2780385504 @default.
- W4386830317 hasConceptScore W4386830317C2780791200 @default.
- W4386830317 hasConceptScore W4386830317C2992452445 @default.
- W4386830317 hasConceptScore W4386830317C3018527248 @default.