Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386830658> ?p ?o ?g. }
- W4386830658 abstract "Abstract This paper's primary goal is to diagnose COVID‐19 contamination based on the artificial intelligence approach automatically. We used convolutional neural network deep learning algorithm for analyzing the ECG images to detect cardiac abnormalities, consequent of the contamination by the SARS‐CoV‐2 virus, responsible for the COVID‐19 epidemic. We designed, trained, and evaluated the performance of two deep learning models (MobileNetV2 and VGG16) in detecting and distinguishing between two different classes (healthy subjects and COVID‐19 positive cases). Indeed, this virus attacks the human respiratory system, which could affect the heart system. Thus, developing a deep learning model could help for a quick and efficient diagnosis, prediction, and physician decision‐making. The performed deep learning model will be used for predicting abnormal cardiac activities consequent to the contamination by the virus. The overall classification rate achieved by the models was 99.34% and 99.67% for MobileNetV2 and VGG16, respectively. Therefore, this approach can efficiently contribute to the diagnosis of COVID‐19 contamination." @default.
- W4386830658 created "2023-09-19" @default.
- W4386830658 creator A5038175535 @default.
- W4386830658 creator A5062361489 @default.
- W4386830658 creator A5064466701 @default.
- W4386830658 creator A5087282694 @default.
- W4386830658 date "2023-09-18" @default.
- W4386830658 modified "2023-09-26" @default.
- W4386830658 title "Deep learning for <scp>COVID</scp>‐19 contamination analysis and prediction using <scp>ECG</scp> images on <scp>Raspberry Pi 4</scp>" @default.
- W4386830658 cites W1483217448 @default.
- W4386830658 cites W1975169783 @default.
- W4386830658 cites W2101509327 @default.
- W4386830658 cites W2124476602 @default.
- W4386830658 cites W2702116941 @default.
- W4386830658 cites W2800094831 @default.
- W4386830658 cites W2924178503 @default.
- W4386830658 cites W2954996726 @default.
- W4386830658 cites W2957682442 @default.
- W4386830658 cites W2982647848 @default.
- W4386830658 cites W2999309192 @default.
- W4386830658 cites W3019531985 @default.
- W4386830658 cites W3021622280 @default.
- W4386830658 cites W3033616466 @default.
- W4386830658 cites W3041463877 @default.
- W4386830658 cites W3048450677 @default.
- W4386830658 cites W3082674629 @default.
- W4386830658 cites W3086584408 @default.
- W4386830658 cites W3089168916 @default.
- W4386830658 cites W3089290459 @default.
- W4386830658 cites W3099916295 @default.
- W4386830658 cites W3118424951 @default.
- W4386830658 cites W3123312433 @default.
- W4386830658 cites W3124099916 @default.
- W4386830658 cites W3133765315 @default.
- W4386830658 cites W3136704465 @default.
- W4386830658 cites W3140854437 @default.
- W4386830658 cites W3158609158 @default.
- W4386830658 cites W3170900500 @default.
- W4386830658 cites W3185646120 @default.
- W4386830658 cites W3206185188 @default.
- W4386830658 cites W3207421495 @default.
- W4386830658 cites W3208239477 @default.
- W4386830658 cites W4205904084 @default.
- W4386830658 cites W4214680698 @default.
- W4386830658 cites W4220814249 @default.
- W4386830658 cites W4221104716 @default.
- W4386830658 cites W4229060352 @default.
- W4386830658 cites W4283786338 @default.
- W4386830658 cites W4289705033 @default.
- W4386830658 cites W4292548543 @default.
- W4386830658 cites W4311061959 @default.
- W4386830658 cites W4313361170 @default.
- W4386830658 cites W4313898142 @default.
- W4386830658 doi "https://doi.org/10.1002/ima.22965" @default.
- W4386830658 hasPublicationYear "2023" @default.
- W4386830658 type Work @default.
- W4386830658 citedByCount "0" @default.
- W4386830658 crossrefType "journal-article" @default.
- W4386830658 hasAuthorship W4386830658A5038175535 @default.
- W4386830658 hasAuthorship W4386830658A5062361489 @default.
- W4386830658 hasAuthorship W4386830658A5064466701 @default.
- W4386830658 hasAuthorship W4386830658A5087282694 @default.
- W4386830658 hasConcept C108583219 @default.
- W4386830658 hasConcept C112570922 @default.
- W4386830658 hasConcept C119857082 @default.
- W4386830658 hasConcept C142724271 @default.
- W4386830658 hasConcept C154945302 @default.
- W4386830658 hasConcept C18903297 @default.
- W4386830658 hasConcept C2779134260 @default.
- W4386830658 hasConcept C3007834351 @default.
- W4386830658 hasConcept C3008058167 @default.
- W4386830658 hasConcept C41008148 @default.
- W4386830658 hasConcept C524204448 @default.
- W4386830658 hasConcept C71924100 @default.
- W4386830658 hasConcept C81363708 @default.
- W4386830658 hasConcept C86803240 @default.
- W4386830658 hasConceptScore W4386830658C108583219 @default.
- W4386830658 hasConceptScore W4386830658C112570922 @default.
- W4386830658 hasConceptScore W4386830658C119857082 @default.
- W4386830658 hasConceptScore W4386830658C142724271 @default.
- W4386830658 hasConceptScore W4386830658C154945302 @default.
- W4386830658 hasConceptScore W4386830658C18903297 @default.
- W4386830658 hasConceptScore W4386830658C2779134260 @default.
- W4386830658 hasConceptScore W4386830658C3007834351 @default.
- W4386830658 hasConceptScore W4386830658C3008058167 @default.
- W4386830658 hasConceptScore W4386830658C41008148 @default.
- W4386830658 hasConceptScore W4386830658C524204448 @default.
- W4386830658 hasConceptScore W4386830658C71924100 @default.
- W4386830658 hasConceptScore W4386830658C81363708 @default.
- W4386830658 hasConceptScore W4386830658C86803240 @default.
- W4386830658 hasLocation W43868306581 @default.
- W4386830658 hasOpenAccess W4386830658 @default.
- W4386830658 hasPrimaryLocation W43868306581 @default.
- W4386830658 hasRelatedWork W2731899572 @default.
- W4386830658 hasRelatedWork W2999805992 @default.
- W4386830658 hasRelatedWork W3116150086 @default.
- W4386830658 hasRelatedWork W3133861977 @default.
- W4386830658 hasRelatedWork W4200173597 @default.
- W4386830658 hasRelatedWork W4223943233 @default.
- W4386830658 hasRelatedWork W4291897433 @default.