Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386836007> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4386836007 abstract "Abstract The classification of movement in space is one of the key tasks in environmental science. Various geospatial data such as rainfall or other weather data, data on animal movement or landslide data require a quantitative analysis of the probable movement in space to obtain information on potential risks, ecological developments or changes in future. Usually, machine-learning tools are applied for this task, as these approaches are able to classify large amounts of data. Yet, machine-learning approaches also have some drawbacks, e.g. the often required large training sets and the fact that the algorithms are often seen as black boxes. We propose a classification approach for spatial data based on ordinal patterns. Ordinal patterns have the advantage that they are easily applicable, even to small data sets, are robust in the presence of certain changes in the time series and deliver interpretative results. They therefore do not only offer an alternative to machine-learning in the case of small data sets but might also be used in pre-processing for a meaningful feature selection. In this work, we introduce the basic concept of multivariate ordinal patterns and the corresponding limit theorem. A simulation study based on bootstrap demonstrates the validity of the results. The approach is then applied to two real-life data sets, namely rainfall radar data and the movement of a leopard. Both applications emphasize the meaningfulness of the approach. Clearly, certain patterns related to the atmosphere and environment occur significantly often, indicating a strong dependence of the movement on the environment. MSC Classification: 62M10 , 62H20 , 62F12 , 60F05 , 05A05 , 62G30" @default.
- W4386836007 created "2023-09-19" @default.
- W4386836007 creator A5007748939 @default.
- W4386836007 creator A5064231816 @default.
- W4386836007 creator A5012896526 @default.
- W4386836007 date "2023-09-18" @default.
- W4386836007 modified "2023-09-26" @default.
- W4386836007 title "Multivariate Motion Patterns and Applications to Rainfall Radar Data" @default.
- W4386836007 cites W1975161230 @default.
- W4386836007 cites W1980362252 @default.
- W4386836007 cites W1982930124 @default.
- W4386836007 cites W1989089774 @default.
- W4386836007 cites W2007091035 @default.
- W4386836007 cites W2014683958 @default.
- W4386836007 cites W2015280347 @default.
- W4386836007 cites W2025517929 @default.
- W4386836007 cites W2028465151 @default.
- W4386836007 cites W2028859679 @default.
- W4386836007 cites W2043362214 @default.
- W4386836007 cites W2046312801 @default.
- W4386836007 cites W2051157494 @default.
- W4386836007 cites W2056487692 @default.
- W4386836007 cites W2071314036 @default.
- W4386836007 cites W2075415616 @default.
- W4386836007 cites W2075802228 @default.
- W4386836007 cites W2100967164 @default.
- W4386836007 cites W2107163666 @default.
- W4386836007 cites W2109214436 @default.
- W4386836007 cites W2187558081 @default.
- W4386836007 cites W2580954736 @default.
- W4386836007 cites W2605788860 @default.
- W4386836007 cites W2891980108 @default.
- W4386836007 cites W2905502390 @default.
- W4386836007 cites W2947210053 @default.
- W4386836007 cites W2962961725 @default.
- W4386836007 cites W3037847066 @default.
- W4386836007 cites W3080658476 @default.
- W4386836007 cites W3134560786 @default.
- W4386836007 cites W3195845811 @default.
- W4386836007 cites W4220879064 @default.
- W4386836007 cites W4234580748 @default.
- W4386836007 cites W4244512033 @default.
- W4386836007 cites W4294975853 @default.
- W4386836007 cites W4296005154 @default.
- W4386836007 cites W4309028162 @default.
- W4386836007 doi "https://doi.org/10.21203/rs.3.rs-3347318/v1" @default.
- W4386836007 hasPublicationYear "2023" @default.
- W4386836007 type Work @default.
- W4386836007 citedByCount "0" @default.
- W4386836007 crossrefType "posted-content" @default.
- W4386836007 hasAuthorship W4386836007A5007748939 @default.
- W4386836007 hasAuthorship W4386836007A5012896526 @default.
- W4386836007 hasAuthorship W4386836007A5064231816 @default.
- W4386836007 hasBestOaLocation W43868360071 @default.
- W4386836007 hasConcept C119857082 @default.
- W4386836007 hasConcept C124101348 @default.
- W4386836007 hasConcept C154945302 @default.
- W4386836007 hasConcept C161584116 @default.
- W4386836007 hasConcept C41008148 @default.
- W4386836007 hasConcept C554190296 @default.
- W4386836007 hasConcept C76155785 @default.
- W4386836007 hasConceptScore W4386836007C119857082 @default.
- W4386836007 hasConceptScore W4386836007C124101348 @default.
- W4386836007 hasConceptScore W4386836007C154945302 @default.
- W4386836007 hasConceptScore W4386836007C161584116 @default.
- W4386836007 hasConceptScore W4386836007C41008148 @default.
- W4386836007 hasConceptScore W4386836007C554190296 @default.
- W4386836007 hasConceptScore W4386836007C76155785 @default.
- W4386836007 hasLocation W43868360071 @default.
- W4386836007 hasOpenAccess W4386836007 @default.
- W4386836007 hasPrimaryLocation W43868360071 @default.
- W4386836007 hasRelatedWork W2961085424 @default.
- W4386836007 hasRelatedWork W3046775127 @default.
- W4386836007 hasRelatedWork W3170094116 @default.
- W4386836007 hasRelatedWork W4205958290 @default.
- W4386836007 hasRelatedWork W4285260836 @default.
- W4386836007 hasRelatedWork W4286629047 @default.
- W4386836007 hasRelatedWork W4306321456 @default.
- W4386836007 hasRelatedWork W4306674287 @default.
- W4386836007 hasRelatedWork W4386462264 @default.
- W4386836007 hasRelatedWork W4224009465 @default.
- W4386836007 isParatext "false" @default.
- W4386836007 isRetracted "false" @default.
- W4386836007 workType "article" @default.