Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386836026> ?p ?o ?g. }
- W4386836026 endingPage "13847" @default.
- W4386836026 startingPage "13847" @default.
- W4386836026 abstract "The rapid assessment of post-earthquake building damage for rescue and reconstruction is a crucial strategy to reduce the enormous number of human casualties and economic losses caused by earthquakes. Conventional machine learning (ML) approaches for this problem usually employ one-hot encoding to cope with categorical features, and their overall procedure is neither sufficient nor comprehensive. Therefore, this study proposed a three-stage approach, which can directly handle categorical features and enhance the entire methodology of ML applications. In stage I, an integrated data preprocessing framework involving subjective–objective feature selection was proposed and performed on a dataset of buildings after the 2015 Gorkha earthquake. In stage II, four machine learning models, KNN, XGBoost, CatBoost, and LightGBM, were trained and tested on the dataset. The best model was judged by comprehensive metrics, including the proposed risk coefficient. In stage III, the feature importance, the relationships between the features and the model’s output, and the feature interaction effects were investigated by Shapley additive explanations. The results indicate that the LightGBM model has the best overall performance with the highest accuracy of 0.897, the lowest risk coefficient of 0.042, and the shortest training time of 12.68 s due to its relevant algorithms for directly tackling categorical features. As for its interpretability, the most important features are determined, and information on these features’ impacts and interactions is obtained to improve the reliability of and promote practical engineering applications for the ML models. The proposed three-stage approach can provide a reference for the overall ML implementation process on raw datasets for similar problems." @default.
- W4386836026 created "2023-09-19" @default.
- W4386836026 creator A5018649015 @default.
- W4386836026 creator A5022585067 @default.
- W4386836026 creator A5029872017 @default.
- W4386836026 creator A5035218574 @default.
- W4386836026 creator A5064530138 @default.
- W4386836026 creator A5072071140 @default.
- W4386836026 date "2023-09-18" @default.
- W4386836026 modified "2023-09-26" @default.
- W4386836026 title "Machine Learning Assessment of Damage Grade for Post-Earthquake Buildings: A Three-Stage Approach Directly Handling Categorical Features" @default.
- W4386836026 cites W1678356000 @default.
- W4386836026 cites W2023635934 @default.
- W4386836026 cites W2070493638 @default.
- W4386836026 cites W2135695572 @default.
- W4386836026 cites W2606436201 @default.
- W4386836026 cites W2620509500 @default.
- W4386836026 cites W2887013219 @default.
- W4386836026 cites W2915947119 @default.
- W4386836026 cites W2940184194 @default.
- W4386836026 cites W2950389803 @default.
- W4386836026 cites W2968205066 @default.
- W4386836026 cites W2972442662 @default.
- W4386836026 cites W2985898210 @default.
- W4386836026 cites W3004374146 @default.
- W4386836026 cites W3007075612 @default.
- W4386836026 cites W3023943971 @default.
- W4386836026 cites W3035353528 @default.
- W4386836026 cites W3035517615 @default.
- W4386836026 cites W3048646591 @default.
- W4386836026 cites W3095807143 @default.
- W4386836026 cites W3102476541 @default.
- W4386836026 cites W3114136449 @default.
- W4386836026 cites W3126673331 @default.
- W4386836026 cites W3150635270 @default.
- W4386836026 cites W3207642814 @default.
- W4386836026 cites W3213218849 @default.
- W4386836026 cites W4200434888 @default.
- W4386836026 cites W4206236541 @default.
- W4386836026 cites W4221031603 @default.
- W4386836026 cites W4221067539 @default.
- W4386836026 cites W4226439930 @default.
- W4386836026 cites W4229376334 @default.
- W4386836026 cites W4283763819 @default.
- W4386836026 cites W4285732709 @default.
- W4386836026 cites W4286494054 @default.
- W4386836026 cites W4286586844 @default.
- W4386836026 cites W4289175338 @default.
- W4386836026 cites W4306906955 @default.
- W4386836026 cites W4309787466 @default.
- W4386836026 cites W4310075141 @default.
- W4386836026 cites W4319159469 @default.
- W4386836026 cites W4322763581 @default.
- W4386836026 cites W4323350904 @default.
- W4386836026 cites W4324382896 @default.
- W4386836026 cites W4361211739 @default.
- W4386836026 cites W590241356 @default.
- W4386836026 doi "https://doi.org/10.3390/su151813847" @default.
- W4386836026 hasPublicationYear "2023" @default.
- W4386836026 type Work @default.
- W4386836026 citedByCount "0" @default.
- W4386836026 crossrefType "journal-article" @default.
- W4386836026 hasAuthorship W4386836026A5018649015 @default.
- W4386836026 hasAuthorship W4386836026A5022585067 @default.
- W4386836026 hasAuthorship W4386836026A5029872017 @default.
- W4386836026 hasAuthorship W4386836026A5035218574 @default.
- W4386836026 hasAuthorship W4386836026A5064530138 @default.
- W4386836026 hasAuthorship W4386836026A5072071140 @default.
- W4386836026 hasBestOaLocation W43868360261 @default.
- W4386836026 hasConcept C10551718 @default.
- W4386836026 hasConcept C119857082 @default.
- W4386836026 hasConcept C124101348 @default.
- W4386836026 hasConcept C138885662 @default.
- W4386836026 hasConcept C146357865 @default.
- W4386836026 hasConcept C148483581 @default.
- W4386836026 hasConcept C151730666 @default.
- W4386836026 hasConcept C154945302 @default.
- W4386836026 hasConcept C2776401178 @default.
- W4386836026 hasConcept C2781067378 @default.
- W4386836026 hasConcept C34736171 @default.
- W4386836026 hasConcept C41008148 @default.
- W4386836026 hasConcept C41895202 @default.
- W4386836026 hasConcept C5274069 @default.
- W4386836026 hasConcept C86803240 @default.
- W4386836026 hasConceptScore W4386836026C10551718 @default.
- W4386836026 hasConceptScore W4386836026C119857082 @default.
- W4386836026 hasConceptScore W4386836026C124101348 @default.
- W4386836026 hasConceptScore W4386836026C138885662 @default.
- W4386836026 hasConceptScore W4386836026C146357865 @default.
- W4386836026 hasConceptScore W4386836026C148483581 @default.
- W4386836026 hasConceptScore W4386836026C151730666 @default.
- W4386836026 hasConceptScore W4386836026C154945302 @default.
- W4386836026 hasConceptScore W4386836026C2776401178 @default.
- W4386836026 hasConceptScore W4386836026C2781067378 @default.
- W4386836026 hasConceptScore W4386836026C34736171 @default.
- W4386836026 hasConceptScore W4386836026C41008148 @default.
- W4386836026 hasConceptScore W4386836026C41895202 @default.
- W4386836026 hasConceptScore W4386836026C5274069 @default.