Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386836655> ?p ?o ?g. }
- W4386836655 abstract "The aim of this study was to develop a machine learning-based automatic analysis method for the diagnosis of early-stage lung cancer based on positron emission tomography/computed tomography (PET/CT) data.A retrospective cohort study was conducted using PET/CT data from 187 cases of non-small cell lung cancer (NSCLC) and 190 benign pulmonary nodules. Twelve PET and CT features were used to train a diagnosis model. The performance of the machine learning-based PET/CT model was tested and validated in two separate cohorts comprising 462 and 229 cases, respectively.The standardized uptake value (SUV) was identified as an important biochemical factor for the early stage of lung cancer in this model. The PET/CT diagnosis model had a sensitivity and area under the curve (AUC) of 86.5% and 0.89, respectively. The testing group comprising 462 cases showed a sensitivity and AUC of 85.7% and 0.87, respectively, while the validation group comprising 229 cases showed a sensitivity and AUC of 88.4% and 0.91, respectively. Additionally, the proposed model improved the clinical discrimination ability for solid pulmonary nodules (SPNs) in the early stage significantly.The feature data collected from PET/CT scans can be analyzed automatically using machine learning techniques. The results of this study demonstrated that the proposed model can significantly improve the accuracy and positive predictive value (PPV) of SPNs at the early stage. Furthermore, this algorithm can be optimized into a robotic and less biased PET/CT automatic diagnosis system." @default.
- W4386836655 created "2023-09-19" @default.
- W4386836655 creator A5005812131 @default.
- W4386836655 creator A5031228750 @default.
- W4386836655 creator A5045579065 @default.
- W4386836655 creator A5056016532 @default.
- W4386836655 creator A5058136356 @default.
- W4386836655 creator A5064842058 @default.
- W4386836655 creator A5069771802 @default.
- W4386836655 creator A5080668659 @default.
- W4386836655 creator A5085253903 @default.
- W4386836655 creator A5087027099 @default.
- W4386836655 date "2023-09-15" @default.
- W4386836655 modified "2023-10-05" @default.
- W4386836655 title "A machine learning-based PET/CT model for automatic diagnosis of early-stage lung cancer" @default.
- W4386836655 cites W194652683 @default.
- W4386836655 cites W1963834740 @default.
- W4386836655 cites W1978239142 @default.
- W4386836655 cites W1979538859 @default.
- W4386836655 cites W1986565754 @default.
- W4386836655 cites W2002052629 @default.
- W4386836655 cites W2013181461 @default.
- W4386836655 cites W2020089990 @default.
- W4386836655 cites W2031659472 @default.
- W4386836655 cites W2049013464 @default.
- W4386836655 cites W2071081948 @default.
- W4386836655 cites W2075691011 @default.
- W4386836655 cites W2112971584 @default.
- W4386836655 cites W2122246024 @default.
- W4386836655 cites W2125996276 @default.
- W4386836655 cites W2128905068 @default.
- W4386836655 cites W2141376648 @default.
- W4386836655 cites W2142319221 @default.
- W4386836655 cites W2171486924 @default.
- W4386836655 cites W2226313998 @default.
- W4386836655 cites W2313101906 @default.
- W4386836655 cites W2397461818 @default.
- W4386836655 cites W2492855126 @default.
- W4386836655 cites W2520380240 @default.
- W4386836655 cites W2744238030 @default.
- W4386836655 cites W2751708584 @default.
- W4386836655 cites W2753797290 @default.
- W4386836655 cites W2775383209 @default.
- W4386836655 cites W2776006413 @default.
- W4386836655 cites W2785128907 @default.
- W4386836655 cites W2820787630 @default.
- W4386836655 cites W2968785127 @default.
- W4386836655 cites W2993410833 @default.
- W4386836655 doi "https://doi.org/10.3389/fonc.2023.1192908" @default.
- W4386836655 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37786508" @default.
- W4386836655 hasPublicationYear "2023" @default.
- W4386836655 type Work @default.
- W4386836655 citedByCount "0" @default.
- W4386836655 crossrefType "journal-article" @default.
- W4386836655 hasAuthorship W4386836655A5005812131 @default.
- W4386836655 hasAuthorship W4386836655A5031228750 @default.
- W4386836655 hasAuthorship W4386836655A5045579065 @default.
- W4386836655 hasAuthorship W4386836655A5056016532 @default.
- W4386836655 hasAuthorship W4386836655A5058136356 @default.
- W4386836655 hasAuthorship W4386836655A5064842058 @default.
- W4386836655 hasAuthorship W4386836655A5069771802 @default.
- W4386836655 hasAuthorship W4386836655A5080668659 @default.
- W4386836655 hasAuthorship W4386836655A5085253903 @default.
- W4386836655 hasAuthorship W4386836655A5087027099 @default.
- W4386836655 hasBestOaLocation W43868366551 @default.
- W4386836655 hasConcept C119857082 @default.
- W4386836655 hasConcept C121608353 @default.
- W4386836655 hasConcept C126322002 @default.
- W4386836655 hasConcept C126838900 @default.
- W4386836655 hasConcept C127077266 @default.
- W4386836655 hasConcept C142724271 @default.
- W4386836655 hasConcept C143998085 @default.
- W4386836655 hasConcept C146357865 @default.
- W4386836655 hasConcept C151730666 @default.
- W4386836655 hasConcept C154945302 @default.
- W4386836655 hasConcept C167135981 @default.
- W4386836655 hasConcept C199374082 @default.
- W4386836655 hasConcept C2775842073 @default.
- W4386836655 hasConcept C2776256026 @default.
- W4386836655 hasConcept C2989005 @default.
- W4386836655 hasConcept C41008148 @default.
- W4386836655 hasConcept C71924100 @default.
- W4386836655 hasConcept C86803240 @default.
- W4386836655 hasConceptScore W4386836655C119857082 @default.
- W4386836655 hasConceptScore W4386836655C121608353 @default.
- W4386836655 hasConceptScore W4386836655C126322002 @default.
- W4386836655 hasConceptScore W4386836655C126838900 @default.
- W4386836655 hasConceptScore W4386836655C127077266 @default.
- W4386836655 hasConceptScore W4386836655C142724271 @default.
- W4386836655 hasConceptScore W4386836655C143998085 @default.
- W4386836655 hasConceptScore W4386836655C146357865 @default.
- W4386836655 hasConceptScore W4386836655C151730666 @default.
- W4386836655 hasConceptScore W4386836655C154945302 @default.
- W4386836655 hasConceptScore W4386836655C167135981 @default.
- W4386836655 hasConceptScore W4386836655C199374082 @default.
- W4386836655 hasConceptScore W4386836655C2775842073 @default.
- W4386836655 hasConceptScore W4386836655C2776256026 @default.
- W4386836655 hasConceptScore W4386836655C2989005 @default.
- W4386836655 hasConceptScore W4386836655C41008148 @default.
- W4386836655 hasConceptScore W4386836655C71924100 @default.