Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386836900> ?p ?o ?g. }
- W4386836900 abstract "Background: As artificial intelligence (AI) continues to advance with breakthroughs in natural language processing (NLP) and machine learning (ML), such as the development of models like OpenAI’s ChatGPT, new opportunities are emerging for efficient curation of electronic health records (EHR) into real-world data (RWD) for evidence generation in oncology. Our objective is to describe the research and development of industry methods to promote transparency and explainability. Methods: We applied NLP with ML techniques to train, validate, and test the extraction of information from unstructured documents (e.g., clinician notes, radiology reports, lab reports, etc.) to output a set of structured variables required for RWD analysis. This research used a nationwide electronic health record (EHR)-derived database. Models were selected based on performance. Variables curated with an approach using ML extraction are those where the value is determined solely based on an ML model (i.e. not confirmed by abstraction), which identifies key information from visit notes and documents. These models do not predict future events or infer missing information. Results: We developed an approach using NLP and ML for extraction of clinically meaningful information from unstructured EHR documents and found high performance of output variables compared with variables curated by manually abstracted data. These extraction methods resulted in research-ready variables including initial cancer diagnosis with date, advanced/metastatic diagnosis with date, disease stage, histology, smoking status, surgery status with date, biomarker test results with dates, and oral treatments with dates. Conclusion: NLP and ML enable the extraction of retrospective clinical data in EHR with speed and scalability to help researchers learn from the experience of every person with cancer." @default.
- W4386836900 created "2023-09-19" @default.
- W4386836900 creator A5009047448 @default.
- W4386836900 creator A5009548574 @default.
- W4386836900 creator A5009931909 @default.
- W4386836900 creator A5011430974 @default.
- W4386836900 creator A5016467618 @default.
- W4386836900 creator A5025099912 @default.
- W4386836900 creator A5025165259 @default.
- W4386836900 creator A5025890076 @default.
- W4386836900 creator A5027964386 @default.
- W4386836900 creator A5032079982 @default.
- W4386836900 creator A5040184845 @default.
- W4386836900 creator A5047414596 @default.
- W4386836900 creator A5054463147 @default.
- W4386836900 creator A5065196908 @default.
- W4386836900 creator A5070370151 @default.
- W4386836900 creator A5075550976 @default.
- W4386836900 creator A5076457721 @default.
- W4386836900 creator A5078123523 @default.
- W4386836900 creator A5082759479 @default.
- W4386836900 creator A5084390255 @default.
- W4386836900 date "2023-09-15" @default.
- W4386836900 modified "2023-10-16" @default.
- W4386836900 title "Approach to machine learning for extraction of real-world data variables from electronic health records" @default.
- W4386836900 cites W2064675550 @default.
- W4386836900 cites W2625625371 @default.
- W4386836900 cites W2755364614 @default.
- W4386836900 cites W2787969497 @default.
- W4386836900 cites W2906053813 @default.
- W4386836900 cites W2908483662 @default.
- W4386836900 cites W2912971066 @default.
- W4386836900 cites W2954970800 @default.
- W4386836900 cites W2955517798 @default.
- W4386836900 cites W2963899699 @default.
- W4386836900 cites W2967444033 @default.
- W4386836900 cites W2978612210 @default.
- W4386836900 cites W2979125633 @default.
- W4386836900 cites W2984027395 @default.
- W4386836900 cites W3027036540 @default.
- W4386836900 cites W3083804794 @default.
- W4386836900 cites W3092918180 @default.
- W4386836900 cites W3152962621 @default.
- W4386836900 cites W3159789914 @default.
- W4386836900 cites W3168363126 @default.
- W4386836900 cites W3170450419 @default.
- W4386836900 cites W3171365590 @default.
- W4386836900 cites W4224433810 @default.
- W4386836900 cites W4283331591 @default.
- W4386836900 cites W4283703423 @default.
- W4386836900 cites W4287397171 @default.
- W4386836900 cites W4291992040 @default.
- W4386836900 cites W4304141650 @default.
- W4386836900 cites W4311340228 @default.
- W4386836900 cites W4311359027 @default.
- W4386836900 cites W4316507348 @default.
- W4386836900 cites W4323542771 @default.
- W4386836900 cites W4327968451 @default.
- W4386836900 cites W61851215 @default.
- W4386836900 doi "https://doi.org/10.3389/fphar.2023.1180962" @default.
- W4386836900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37781703" @default.
- W4386836900 hasPublicationYear "2023" @default.
- W4386836900 type Work @default.
- W4386836900 citedByCount "0" @default.
- W4386836900 crossrefType "journal-article" @default.
- W4386836900 hasAuthorship W4386836900A5009047448 @default.
- W4386836900 hasAuthorship W4386836900A5009548574 @default.
- W4386836900 hasAuthorship W4386836900A5009931909 @default.
- W4386836900 hasAuthorship W4386836900A5011430974 @default.
- W4386836900 hasAuthorship W4386836900A5016467618 @default.
- W4386836900 hasAuthorship W4386836900A5025099912 @default.
- W4386836900 hasAuthorship W4386836900A5025165259 @default.
- W4386836900 hasAuthorship W4386836900A5025890076 @default.
- W4386836900 hasAuthorship W4386836900A5027964386 @default.
- W4386836900 hasAuthorship W4386836900A5032079982 @default.
- W4386836900 hasAuthorship W4386836900A5040184845 @default.
- W4386836900 hasAuthorship W4386836900A5047414596 @default.
- W4386836900 hasAuthorship W4386836900A5054463147 @default.
- W4386836900 hasAuthorship W4386836900A5065196908 @default.
- W4386836900 hasAuthorship W4386836900A5070370151 @default.
- W4386836900 hasAuthorship W4386836900A5075550976 @default.
- W4386836900 hasAuthorship W4386836900A5076457721 @default.
- W4386836900 hasAuthorship W4386836900A5078123523 @default.
- W4386836900 hasAuthorship W4386836900A5082759479 @default.
- W4386836900 hasAuthorship W4386836900A5084390255 @default.
- W4386836900 hasBestOaLocation W43868369001 @default.
- W4386836900 hasConcept C119857082 @default.
- W4386836900 hasConcept C124101348 @default.
- W4386836900 hasConcept C153604712 @default.
- W4386836900 hasConcept C154945302 @default.
- W4386836900 hasConcept C160735492 @default.
- W4386836900 hasConcept C162324750 @default.
- W4386836900 hasConcept C169903167 @default.
- W4386836900 hasConcept C17744445 @default.
- W4386836900 hasConcept C195807954 @default.
- W4386836900 hasConcept C199539241 @default.
- W4386836900 hasConcept C204321447 @default.
- W4386836900 hasConcept C23123220 @default.
- W4386836900 hasConcept C2522767166 @default.
- W4386836900 hasConcept C2777466982 @default.