Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386837566> ?p ?o ?g. }
- W4386837566 endingPage "785" @default.
- W4386837566 startingPage "785" @default.
- W4386837566 abstract "In silico (quantitative) structure–activity relationship modeling is an approach that provides a fast and cost-effective alternative to assess the genotoxic potential of chemicals. However, one of the limiting factors for model development is the availability of consolidated experimental datasets. In the present study, we collected experimental data on micronuclei in vitro and in vivo, utilizing databases and conducting a PubMed search, aided by text mining using the BioBERT large language model. Chemotype enrichment analysis on the updated datasets was performed to identify enriched substructures. Additionally, chemotypes common for both endpoints were found. Five machine learning models in combination with molecular descriptors, twelve fingerprints and two data balancing techniques were applied to construct individual models. The best-performing individual models were selected for the ensemble construction. The curated final dataset consists of 981 chemicals for micronuclei in vitro and 1309 for mouse micronuclei in vivo, respectively. Out of 18 chemotypes enriched in micronuclei in vitro, only 7 were found to be relevant for in vivo prediction. The ensemble model exhibited high accuracy and sensitivity when applied to an external test set of in vitro data. A good balanced predictive performance was also achieved for the micronucleus in vivo endpoint." @default.
- W4386837566 created "2023-09-19" @default.
- W4386837566 creator A5005769994 @default.
- W4386837566 creator A5011162032 @default.
- W4386837566 creator A5013131159 @default.
- W4386837566 creator A5014325801 @default.
- W4386837566 creator A5028792014 @default.
- W4386837566 creator A5048395606 @default.
- W4386837566 creator A5050797011 @default.
- W4386837566 creator A5053167026 @default.
- W4386837566 creator A5080974052 @default.
- W4386837566 creator A5092896801 @default.
- W4386837566 date "2023-09-15" @default.
- W4386837566 modified "2023-10-17" @default.
- W4386837566 title "Datasets Construction and Development of QSAR Models for Predicting Micronucleus In Vitro and In Vivo Assay Outcomes" @default.
- W4386837566 cites W1970197319 @default.
- W4386837566 cites W1984994707 @default.
- W4386837566 cites W1991181258 @default.
- W4386837566 cites W2004129919 @default.
- W4386837566 cites W2071551353 @default.
- W4386837566 cites W2105099536 @default.
- W4386837566 cites W2117856769 @default.
- W4386837566 cites W2119168155 @default.
- W4386837566 cites W2125613508 @default.
- W4386837566 cites W2148143831 @default.
- W4386837566 cites W2148690874 @default.
- W4386837566 cites W2155806188 @default.
- W4386837566 cites W2171830166 @default.
- W4386837566 cites W2208164594 @default.
- W4386837566 cites W2269194472 @default.
- W4386837566 cites W2282221058 @default.
- W4386837566 cites W2414319411 @default.
- W4386837566 cites W2505111826 @default.
- W4386837566 cites W2513653040 @default.
- W4386837566 cites W2594183968 @default.
- W4386837566 cites W2773131117 @default.
- W4386837566 cites W2886996669 @default.
- W4386837566 cites W2898098684 @default.
- W4386837566 cites W2900090807 @default.
- W4386837566 cites W2903262661 @default.
- W4386837566 cites W2911489562 @default.
- W4386837566 cites W2911964244 @default.
- W4386837566 cites W2918653341 @default.
- W4386837566 cites W2949776037 @default.
- W4386837566 cites W2979826702 @default.
- W4386837566 cites W2984379065 @default.
- W4386837566 cites W3007523597 @default.
- W4386837566 cites W3023844673 @default.
- W4386837566 cites W3036906327 @default.
- W4386837566 cites W3102476541 @default.
- W4386837566 cites W3165284704 @default.
- W4386837566 cites W3194368700 @default.
- W4386837566 cites W3205874672 @default.
- W4386837566 cites W4237486075 @default.
- W4386837566 cites W4301480471 @default.
- W4386837566 doi "https://doi.org/10.3390/toxics11090785" @default.
- W4386837566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37755795" @default.
- W4386837566 hasPublicationYear "2023" @default.
- W4386837566 type Work @default.
- W4386837566 citedByCount "0" @default.
- W4386837566 crossrefType "journal-article" @default.
- W4386837566 hasAuthorship W4386837566A5005769994 @default.
- W4386837566 hasAuthorship W4386837566A5011162032 @default.
- W4386837566 hasAuthorship W4386837566A5013131159 @default.
- W4386837566 hasAuthorship W4386837566A5014325801 @default.
- W4386837566 hasAuthorship W4386837566A5028792014 @default.
- W4386837566 hasAuthorship W4386837566A5048395606 @default.
- W4386837566 hasAuthorship W4386837566A5050797011 @default.
- W4386837566 hasAuthorship W4386837566A5053167026 @default.
- W4386837566 hasAuthorship W4386837566A5080974052 @default.
- W4386837566 hasAuthorship W4386837566A5092896801 @default.
- W4386837566 hasBestOaLocation W43868375661 @default.
- W4386837566 hasConcept C104317684 @default.
- W4386837566 hasConcept C119857082 @default.
- W4386837566 hasConcept C124101348 @default.
- W4386837566 hasConcept C150903083 @default.
- W4386837566 hasConcept C153784791 @default.
- W4386837566 hasConcept C164126121 @default.
- W4386837566 hasConcept C178790620 @default.
- W4386837566 hasConcept C185592680 @default.
- W4386837566 hasConcept C207001950 @default.
- W4386837566 hasConcept C2775905019 @default.
- W4386837566 hasConcept C2777278459 @default.
- W4386837566 hasConcept C29730261 @default.
- W4386837566 hasConcept C41008148 @default.
- W4386837566 hasConcept C43617362 @default.
- W4386837566 hasConcept C45080847 @default.
- W4386837566 hasConcept C54355233 @default.
- W4386837566 hasConcept C70721500 @default.
- W4386837566 hasConcept C86803240 @default.
- W4386837566 hasConceptScore W4386837566C104317684 @default.
- W4386837566 hasConceptScore W4386837566C119857082 @default.
- W4386837566 hasConceptScore W4386837566C124101348 @default.
- W4386837566 hasConceptScore W4386837566C150903083 @default.
- W4386837566 hasConceptScore W4386837566C153784791 @default.
- W4386837566 hasConceptScore W4386837566C164126121 @default.
- W4386837566 hasConceptScore W4386837566C178790620 @default.
- W4386837566 hasConceptScore W4386837566C185592680 @default.