Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386837577> ?p ?o ?g. }
- W4386837577 abstract "In recent years, the utilization of flow cytometry for quantitative microplastic analysis has gained prominence. However, the current methods have some drawbacks that need to be improved. The present study aims to enhance the flow cytometry detection protocols for Nile red (NR) stained microplastics, facilitating distinct microplastic and nanoplastic enumeration. By elevating dimethyl sulfoxide (DMSO) concentration to 20%-30% within the solution, NR solubility improved and agglomeration reduced. The analysis of 26 replicates of polystyrene (PS) liquid samples through four distinct dot plots highlighted the superior accuracy of dot plots integrating yellow fluorescence. Through systematic staining of varying NR concentrations across three microplastic liquid samples (polyethylene terephthalate, polyethylene, and polypropylene), the optimal staining concentration was determined to be 15-20 μg/mL. The distributions of agglomerated NR and NR stained PS under two scenarios-dissolved NR and partially agglomerated NR-were compared. Results showed their distinct distributions within the side scatter versus yellow fluorescence dot plot. Counting results from gradient-diluted PS liquid samples revealed a microplastic detection lower limit of 104 particles/mL, with an optimal concentration range of 105-106 particles/mL. Flow cytometric assessment of PS microspheres spanning 150 nm to 40 μm indicated a 150 nm particle size detection minimum. Our investigation validated the efficacy of NR staining and subsequent flow cytometry analysis across eleven types of microplastics. Separation and concentration of microplastics (1.0-50.0 μm) and nanoplastics (0.2-1.0 μm) were achieved via sequential sieving through 50, 1.0, and 0.2 μm filter membranes. We used a combination of multiple filtration steps and flow cytometry to analyze microplastics and nanoplastics in nine simulated water samples. Our results showed that the combined amount of microplastics (1.0-50.0 μm) and nanoplastics (0.2-1.0 μm) after filtration had a ratio of 0.80-1.19 compared to the total microplastic concentration before filtration. This result confirms the practicality of our approach. By enhancing flow cytometry-based microplastic and nanoplastic detection protocols, our study provides pivotal technical support for research concerning quantitative toxicity assessment of microplastic and nanoplastic pollution." @default.
- W4386837577 created "2023-09-19" @default.
- W4386837577 creator A5013617878 @default.
- W4386837577 creator A5028872538 @default.
- W4386837577 creator A5034747959 @default.
- W4386837577 creator A5036056631 @default.
- W4386837577 creator A5074999356 @default.
- W4386837577 date "2023-09-15" @default.
- W4386837577 modified "2023-10-03" @default.
- W4386837577 title "Separation and flow cytometry analysis of microplastics and nanoplastics" @default.
- W4386837577 cites W2119654329 @default.
- W4386837577 cites W2134579258 @default.
- W4386837577 cites W2520014603 @default.
- W4386837577 cites W2540730170 @default.
- W4386837577 cites W2773264709 @default.
- W4386837577 cites W2785715629 @default.
- W4386837577 cites W2803337465 @default.
- W4386837577 cites W2910368005 @default.
- W4386837577 cites W2916325524 @default.
- W4386837577 cites W2921746022 @default.
- W4386837577 cites W2977164150 @default.
- W4386837577 cites W2984919965 @default.
- W4386837577 cites W3007155206 @default.
- W4386837577 cites W3017117424 @default.
- W4386837577 cites W3042327228 @default.
- W4386837577 cites W3088724696 @default.
- W4386837577 cites W3093622122 @default.
- W4386837577 cites W3100716142 @default.
- W4386837577 cites W3109968655 @default.
- W4386837577 cites W3127956128 @default.
- W4386837577 cites W3129687012 @default.
- W4386837577 cites W3153712754 @default.
- W4386837577 cites W3198932965 @default.
- W4386837577 cites W3198968050 @default.
- W4386837577 cites W4200350200 @default.
- W4386837577 cites W4205810329 @default.
- W4386837577 cites W4206925937 @default.
- W4386837577 cites W4210266455 @default.
- W4386837577 cites W4220655782 @default.
- W4386837577 cites W4225394318 @default.
- W4386837577 cites W4285013886 @default.
- W4386837577 cites W4311189995 @default.
- W4386837577 doi "https://doi.org/10.3389/fchem.2023.1201734" @default.
- W4386837577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37780985" @default.
- W4386837577 hasPublicationYear "2023" @default.
- W4386837577 type Work @default.
- W4386837577 citedByCount "0" @default.
- W4386837577 crossrefType "journal-article" @default.
- W4386837577 hasAuthorship W4386837577A5013617878 @default.
- W4386837577 hasAuthorship W4386837577A5028872538 @default.
- W4386837577 hasAuthorship W4386837577A5034747959 @default.
- W4386837577 hasAuthorship W4386837577A5036056631 @default.
- W4386837577 hasAuthorship W4386837577A5074999356 @default.
- W4386837577 hasBestOaLocation W43868375771 @default.
- W4386837577 hasConcept C107872376 @default.
- W4386837577 hasConcept C113196181 @default.
- W4386837577 hasConcept C119128265 @default.
- W4386837577 hasConcept C121332964 @default.
- W4386837577 hasConcept C147789679 @default.
- W4386837577 hasConcept C153911025 @default.
- W4386837577 hasConcept C178790620 @default.
- W4386837577 hasConcept C185592680 @default.
- W4386837577 hasConcept C187530423 @default.
- W4386837577 hasConcept C18903297 @default.
- W4386837577 hasConcept C192562407 @default.
- W4386837577 hasConcept C2777922577 @default.
- W4386837577 hasConcept C2778086801 @default.
- W4386837577 hasConcept C2778517922 @default.
- W4386837577 hasConcept C2779751980 @default.
- W4386837577 hasConcept C2780401329 @default.
- W4386837577 hasConcept C43617362 @default.
- W4386837577 hasConcept C521977710 @default.
- W4386837577 hasConcept C54355233 @default.
- W4386837577 hasConcept C553184892 @default.
- W4386837577 hasConcept C62520636 @default.
- W4386837577 hasConcept C74864618 @default.
- W4386837577 hasConcept C86803240 @default.
- W4386837577 hasConcept C91881484 @default.
- W4386837577 hasConceptScore W4386837577C107872376 @default.
- W4386837577 hasConceptScore W4386837577C113196181 @default.
- W4386837577 hasConceptScore W4386837577C119128265 @default.
- W4386837577 hasConceptScore W4386837577C121332964 @default.
- W4386837577 hasConceptScore W4386837577C147789679 @default.
- W4386837577 hasConceptScore W4386837577C153911025 @default.
- W4386837577 hasConceptScore W4386837577C178790620 @default.
- W4386837577 hasConceptScore W4386837577C185592680 @default.
- W4386837577 hasConceptScore W4386837577C187530423 @default.
- W4386837577 hasConceptScore W4386837577C18903297 @default.
- W4386837577 hasConceptScore W4386837577C192562407 @default.
- W4386837577 hasConceptScore W4386837577C2777922577 @default.
- W4386837577 hasConceptScore W4386837577C2778086801 @default.
- W4386837577 hasConceptScore W4386837577C2778517922 @default.
- W4386837577 hasConceptScore W4386837577C2779751980 @default.
- W4386837577 hasConceptScore W4386837577C2780401329 @default.
- W4386837577 hasConceptScore W4386837577C43617362 @default.
- W4386837577 hasConceptScore W4386837577C521977710 @default.
- W4386837577 hasConceptScore W4386837577C54355233 @default.
- W4386837577 hasConceptScore W4386837577C553184892 @default.
- W4386837577 hasConceptScore W4386837577C62520636 @default.
- W4386837577 hasConceptScore W4386837577C74864618 @default.