Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386837807> ?p ?o ?g. }
- W4386837807 endingPage "508" @default.
- W4386837807 startingPage "508" @default.
- W4386837807 abstract "In this paper, we propose a deep learning-based approach to predict the next event in hospital organizational process models following the guidance of predictive process mining. This method provides value for the planning and allocating of resources since each trace linked to a case shows the consecutive execution of events in a healthcare process. The predictive model is based on a long short-term memory (LSTM) neural network that achieves high accuracy in the training and testing stages. In addition, a framework to implement the LSTM neural network is proposed, comprising stages from the preprocessing of the raw data to selecting the best LSTM model. The effectiveness of the prediction method is evaluated through four real-life event logs that contain historical information on the execution of the processes of patient transfer orders between hospitals, sepsis care cases, billing of medical services, and patient care management. In the test stage, the LSTM model reached values of 0.98, 0.91, 0.85, and 0.81 in the accuracy metric, and in the evaluation of the prediction of the next event using the 10-fold cross-validation technique, values of 0.94, 0.88, 0.84, and 0.81 were obtained for the four previously mentioned event logs. In addition, the performance of the LSTM prediction model was evaluated with the precision, recall, F1-score, and area under the receiver operating characteristic (ROC) curve (AUC) metrics, obtaining high scores very close to 1. The experimental results suggest that the proposed method achieves acceptable measures in predicting the next event regardless of whether an input event or a set of input events is used." @default.
- W4386837807 created "2023-09-19" @default.
- W4386837807 creator A5007851660 @default.
- W4386837807 creator A5033154465 @default.
- W4386837807 creator A5072687228 @default.
- W4386837807 creator A5075699787 @default.
- W4386837807 date "2023-09-16" @default.
- W4386837807 modified "2023-10-01" @default.
- W4386837807 title "A Deep Learning Approach for Predictive Healthcare Process Monitoring" @default.
- W4386837807 cites W1827565655 @default.
- W4386837807 cites W1843425376 @default.
- W4386837807 cites W2103037286 @default.
- W4386837807 cites W2336445786 @default.
- W4386837807 cites W2464792054 @default.
- W4386837807 cites W2518707724 @default.
- W4386837807 cites W2584722588 @default.
- W4386837807 cites W2607113351 @default.
- W4386837807 cites W2742491462 @default.
- W4386837807 cites W2769032287 @default.
- W4386837807 cites W2790662531 @default.
- W4386837807 cites W2791549907 @default.
- W4386837807 cites W2799688878 @default.
- W4386837807 cites W2800841519 @default.
- W4386837807 cites W2920117458 @default.
- W4386837807 cites W2922594471 @default.
- W4386837807 cites W2938612085 @default.
- W4386837807 cites W2944362491 @default.
- W4386837807 cites W3089506332 @default.
- W4386837807 cites W3094086276 @default.
- W4386837807 cites W3102147081 @default.
- W4386837807 cites W3194236142 @default.
- W4386837807 cites W3207435308 @default.
- W4386837807 cites W4200023001 @default.
- W4386837807 cites W4231288952 @default.
- W4386837807 cites W4243932450 @default.
- W4386837807 cites W4246852993 @default.
- W4386837807 cites W4247306008 @default.
- W4386837807 cites W4299432762 @default.
- W4386837807 cites W4313415801 @default.
- W4386837807 cites W4323306227 @default.
- W4386837807 cites W4323566020 @default.
- W4386837807 doi "https://doi.org/10.3390/info14090508" @default.
- W4386837807 hasPublicationYear "2023" @default.
- W4386837807 type Work @default.
- W4386837807 citedByCount "0" @default.
- W4386837807 crossrefType "journal-article" @default.
- W4386837807 hasAuthorship W4386837807A5007851660 @default.
- W4386837807 hasAuthorship W4386837807A5033154465 @default.
- W4386837807 hasAuthorship W4386837807A5072687228 @default.
- W4386837807 hasAuthorship W4386837807A5075699787 @default.
- W4386837807 hasBestOaLocation W43868378071 @default.
- W4386837807 hasConcept C108583219 @default.
- W4386837807 hasConcept C111919701 @default.
- W4386837807 hasConcept C119857082 @default.
- W4386837807 hasConcept C121332964 @default.
- W4386837807 hasConcept C124101348 @default.
- W4386837807 hasConcept C127413603 @default.
- W4386837807 hasConcept C147168706 @default.
- W4386837807 hasConcept C148524875 @default.
- W4386837807 hasConcept C150899416 @default.
- W4386837807 hasConcept C154945302 @default.
- W4386837807 hasConcept C162324750 @default.
- W4386837807 hasConcept C176217482 @default.
- W4386837807 hasConcept C187736073 @default.
- W4386837807 hasConcept C21547014 @default.
- W4386837807 hasConcept C2779662365 @default.
- W4386837807 hasConcept C2780898871 @default.
- W4386837807 hasConcept C34736171 @default.
- W4386837807 hasConcept C41008148 @default.
- W4386837807 hasConcept C50644808 @default.
- W4386837807 hasConcept C58471807 @default.
- W4386837807 hasConcept C62520636 @default.
- W4386837807 hasConcept C81669768 @default.
- W4386837807 hasConcept C98045186 @default.
- W4386837807 hasConceptScore W4386837807C108583219 @default.
- W4386837807 hasConceptScore W4386837807C111919701 @default.
- W4386837807 hasConceptScore W4386837807C119857082 @default.
- W4386837807 hasConceptScore W4386837807C121332964 @default.
- W4386837807 hasConceptScore W4386837807C124101348 @default.
- W4386837807 hasConceptScore W4386837807C127413603 @default.
- W4386837807 hasConceptScore W4386837807C147168706 @default.
- W4386837807 hasConceptScore W4386837807C148524875 @default.
- W4386837807 hasConceptScore W4386837807C150899416 @default.
- W4386837807 hasConceptScore W4386837807C154945302 @default.
- W4386837807 hasConceptScore W4386837807C162324750 @default.
- W4386837807 hasConceptScore W4386837807C176217482 @default.
- W4386837807 hasConceptScore W4386837807C187736073 @default.
- W4386837807 hasConceptScore W4386837807C21547014 @default.
- W4386837807 hasConceptScore W4386837807C2779662365 @default.
- W4386837807 hasConceptScore W4386837807C2780898871 @default.
- W4386837807 hasConceptScore W4386837807C34736171 @default.
- W4386837807 hasConceptScore W4386837807C41008148 @default.
- W4386837807 hasConceptScore W4386837807C50644808 @default.
- W4386837807 hasConceptScore W4386837807C58471807 @default.
- W4386837807 hasConceptScore W4386837807C62520636 @default.
- W4386837807 hasConceptScore W4386837807C81669768 @default.
- W4386837807 hasConceptScore W4386837807C98045186 @default.
- W4386837807 hasFunder F4320331046 @default.