Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386838013> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4386838013 endingPage "3899" @default.
- W4386838013 startingPage "3899" @default.
- W4386838013 abstract "Ransomware attacks on cloud-encrypted data pose a significant risk to the security and privacy of cloud-based businesses and their consumers. We present RANSOMNET+, a state-of-the-art hybrid model that combines Convolutional Neural Networks (CNNs) with pre-trained transformers, to efficiently take on the challenging issue of ransomware attack classification. RANSOMNET+ excels over other models because it combines the greatest features of both architectures, allowing it to capture hierarchical features and local patterns. Our findings demonstrate the exceptional capabilities of RANSOMNET+. The model had a fantastic precision of 99.5%, recall of 98.5%, and F1 score of 97.64%, and attained a training accuracy of 99.6% and a testing accuracy of 99.1%. The loss values for RANSOMNET+ were impressively low, ranging from 0.0003 to 0.0035 throughout training and testing. We tested our model against the industry standard, ResNet 50, as well as the state-of-the-art, VGG 16. RANSOMNET+ excelled over the other two models in terms of F1 score, accuracy, precision, and recall. The algorithm’s decision-making process was also illuminated by RANSOMNET+’s interpretability analysis and graphical representations. The model’s openness and usefulness were improved by the incorporation of feature distributions, outlier detection, and feature importance analysis. Finally, RANSOMNET+ is a huge improvement in cloud safety and ransomware research. As a result of its unrivaled accuracy and resilience, it provides a formidable line of defense against ransomware attacks on cloud-encrypted data, keeping sensitive information secure and ensuring the reliability of cloud-stored data. Cybersecurity professionals and cloud service providers now have a reliable tool to combat ransomware threats thanks to this research." @default.
- W4386838013 created "2023-09-19" @default.
- W4386838013 creator A5002753099 @default.
- W4386838013 creator A5037004433 @default.
- W4386838013 creator A5041199983 @default.
- W4386838013 creator A5063911999 @default.
- W4386838013 creator A5064499805 @default.
- W4386838013 creator A5075210141 @default.
- W4386838013 date "2023-09-15" @default.
- W4386838013 modified "2023-09-26" @default.
- W4386838013 title "Enhancing Ransomware Attack Detection Using Transfer Learning and Deep Learning Ensemble Models on Cloud-Encrypted Data" @default.
- W4386838013 cites W2518820464 @default.
- W4386838013 cites W2792599578 @default.
- W4386838013 cites W2954539634 @default.
- W4386838013 cites W2962912862 @default.
- W4386838013 cites W3039156183 @default.
- W4386838013 cites W3167041328 @default.
- W4386838013 cites W3200413364 @default.
- W4386838013 cites W3213111842 @default.
- W4386838013 cites W4200267592 @default.
- W4386838013 cites W4200569302 @default.
- W4386838013 cites W4214733430 @default.
- W4386838013 cites W4281731231 @default.
- W4386838013 cites W4282929420 @default.
- W4386838013 cites W4283313119 @default.
- W4386838013 cites W4288760578 @default.
- W4386838013 cites W4292972531 @default.
- W4386838013 cites W4306377502 @default.
- W4386838013 cites W4307457959 @default.
- W4386838013 cites W4311759245 @default.
- W4386838013 cites W4312333477 @default.
- W4386838013 cites W4313477864 @default.
- W4386838013 cites W4362513469 @default.
- W4386838013 cites W4376630236 @default.
- W4386838013 cites W4378071190 @default.
- W4386838013 cites W4378190904 @default.
- W4386838013 cites W4378619208 @default.
- W4386838013 cites W4379874976 @default.
- W4386838013 cites W4380996693 @default.
- W4386838013 cites W4384572392 @default.
- W4386838013 cites W4384947601 @default.
- W4386838013 doi "https://doi.org/10.3390/electronics12183899" @default.
- W4386838013 hasPublicationYear "2023" @default.
- W4386838013 type Work @default.
- W4386838013 citedByCount "0" @default.
- W4386838013 crossrefType "journal-article" @default.
- W4386838013 hasAuthorship W4386838013A5002753099 @default.
- W4386838013 hasAuthorship W4386838013A5037004433 @default.
- W4386838013 hasAuthorship W4386838013A5041199983 @default.
- W4386838013 hasAuthorship W4386838013A5063911999 @default.
- W4386838013 hasAuthorship W4386838013A5064499805 @default.
- W4386838013 hasAuthorship W4386838013A5075210141 @default.
- W4386838013 hasBestOaLocation W43868380131 @default.
- W4386838013 hasConcept C108583219 @default.
- W4386838013 hasConcept C111919701 @default.
- W4386838013 hasConcept C119857082 @default.
- W4386838013 hasConcept C124101348 @default.
- W4386838013 hasConcept C148730421 @default.
- W4386838013 hasConcept C154945302 @default.
- W4386838013 hasConcept C2777667771 @default.
- W4386838013 hasConcept C38652104 @default.
- W4386838013 hasConcept C41008148 @default.
- W4386838013 hasConcept C541664917 @default.
- W4386838013 hasConcept C79974875 @default.
- W4386838013 hasConcept C81363708 @default.
- W4386838013 hasConcept C81669768 @default.
- W4386838013 hasConceptScore W4386838013C108583219 @default.
- W4386838013 hasConceptScore W4386838013C111919701 @default.
- W4386838013 hasConceptScore W4386838013C119857082 @default.
- W4386838013 hasConceptScore W4386838013C124101348 @default.
- W4386838013 hasConceptScore W4386838013C148730421 @default.
- W4386838013 hasConceptScore W4386838013C154945302 @default.
- W4386838013 hasConceptScore W4386838013C2777667771 @default.
- W4386838013 hasConceptScore W4386838013C38652104 @default.
- W4386838013 hasConceptScore W4386838013C41008148 @default.
- W4386838013 hasConceptScore W4386838013C541664917 @default.
- W4386838013 hasConceptScore W4386838013C79974875 @default.
- W4386838013 hasConceptScore W4386838013C81363708 @default.
- W4386838013 hasConceptScore W4386838013C81669768 @default.
- W4386838013 hasIssue "18" @default.
- W4386838013 hasLocation W43868380131 @default.
- W4386838013 hasOpenAccess W4386838013 @default.
- W4386838013 hasPrimaryLocation W43868380131 @default.
- W4386838013 hasRelatedWork W2731899572 @default.
- W4386838013 hasRelatedWork W2999805992 @default.
- W4386838013 hasRelatedWork W3116150086 @default.
- W4386838013 hasRelatedWork W3133861977 @default.
- W4386838013 hasRelatedWork W4200173597 @default.
- W4386838013 hasRelatedWork W4223943233 @default.
- W4386838013 hasRelatedWork W4291897433 @default.
- W4386838013 hasRelatedWork W4312417841 @default.
- W4386838013 hasRelatedWork W4321369474 @default.
- W4386838013 hasRelatedWork W4380075502 @default.
- W4386838013 hasVolume "12" @default.
- W4386838013 isParatext "false" @default.
- W4386838013 isRetracted "false" @default.
- W4386838013 workType "article" @default.