Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386840013> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4386840013 abstract "Abstract Background Cutaneous melanoma (CM) is the most common malignant tumor of the skin. Our study aimed to investigate the prognostic value of pathomics signatures for CM by combining pathomics and genomics. Purpose The purpose of this study was to explore the potential application value of pathomics signatures. Methods Pathology full scans, clinical information, and genomics data for CM patients were downloaded from The Cancer Genome Atlas (TCGA) database. Exploratory data analysis (EDA) was used to visualize patient characteristics. Genes related to a poorer prognosis were screened through differential analysis. Survival analysis was performed to assess the prognostic value of gene and pathomics signatures. Artificial neural network (ANN) models predicted prognosis using signatures and genes. Correlation analysis was used to explore signature‐gene links. Results The clinical traits for 468 CM samples and the genomic data and pathology images for 471 CM samples were obtained from the TCGA database. The EDA results combined with multiple machine learning (ML) models suggested that the top 5 clinical traits in terms of importance were age, biopsy site, T stage, N stage and overall disease stage, and the eight ML models had a precision lower than 0.56. A total of 60 differentially expressed genes were obtained by comparing sequencing data. A total of 413 available quantitative signatures of each pathomics image were obtained with CellProfile software. The precision of the binary classification model based on pathomics signatures was 0.99, with a loss value of 1.7119e‐04. The precision of the binary classification model based on differentially expressed genes was 0.98, with a loss value of 0.1101. The precision of the binary classification model based on pathomics signatures and differentially expressed genes was 0.97, with a loss value of 0.2088. The survival analyses showed that the survival rate of the high‐risk group based on gene expression and pathomics signatures was significantly lower than that of the low‐risk group. A total of 222 pathomics signatures and 51 differentially expressed genes were analyzed for survival with p ‐values of less than 0.05. There was a certain correlation between some pathomics signatures and differential gene expression involving ANO2, LINC00158, NDNF, ADAMTS15, and ADGRB3, etc. Conclusion This study evaluated the prognostic significance of pathomics signatures and differentially expressed genes in CM patients. Three ANN models were developed, and all achieved accuracy rates higher than 97%. Specifically, the pathomics signature‐based ANN model maintained a remarkable accuracy of 99%. These findings highlight the CellProfile + ANN model as an excellent choice for prognostic prediction in CM patients. Furthermore, our correlation analysis experimentally demonstrated a preliminary link between disease quantification and qualitative changes. Among various features, including M stage and treatments received, special attention should be given to age, biopsy site, T stage, N stage, and overall disease stage in CM patients." @default.
- W4386840013 created "2023-09-19" @default.
- W4386840013 creator A5002073103 @default.
- W4386840013 creator A5013137539 @default.
- W4386840013 creator A5049709847 @default.
- W4386840013 creator A5072298276 @default.
- W4386840013 creator A5089000661 @default.
- W4386840013 date "2023-09-18" @default.
- W4386840013 modified "2023-09-27" @default.
- W4386840013 title "Exploring and validating the prognostic value of pathomics signatures and genomics in patients with cutaneous melanoma based on bioinformatics and deep learning" @default.
- W4386840013 cites W1923885145 @default.
- W4386840013 cites W1977653087 @default.
- W4386840013 cites W2054233335 @default.
- W4386840013 cites W2138300145 @default.
- W4386840013 cites W2762347490 @default.
- W4386840013 cites W2789662105 @default.
- W4386840013 cites W2797547378 @default.
- W4386840013 cites W2802492729 @default.
- W4386840013 cites W2890853172 @default.
- W4386840013 cites W2903150666 @default.
- W4386840013 cites W2914568698 @default.
- W4386840013 cites W2956228567 @default.
- W4386840013 cites W2962419471 @default.
- W4386840013 cites W2965873243 @default.
- W4386840013 cites W2976515477 @default.
- W4386840013 cites W2978882452 @default.
- W4386840013 cites W2983533943 @default.
- W4386840013 cites W2985406772 @default.
- W4386840013 cites W2994452501 @default.
- W4386840013 cites W2996023058 @default.
- W4386840013 cites W2999091210 @default.
- W4386840013 cites W3004868960 @default.
- W4386840013 cites W3009535750 @default.
- W4386840013 cites W3017728350 @default.
- W4386840013 cites W3034452699 @default.
- W4386840013 cites W3049720247 @default.
- W4386840013 cites W3090926208 @default.
- W4386840013 cites W3101041197 @default.
- W4386840013 cites W3103134014 @default.
- W4386840013 cites W3104135675 @default.
- W4386840013 cites W3111022931 @default.
- W4386840013 cites W3114821275 @default.
- W4386840013 cites W3133693208 @default.
- W4386840013 cites W3157827687 @default.
- W4386840013 cites W3160261825 @default.
- W4386840013 cites W3186087318 @default.
- W4386840013 cites W3191257087 @default.
- W4386840013 cites W3192169136 @default.
- W4386840013 cites W3196136696 @default.
- W4386840013 cites W3204312334 @default.
- W4386840013 cites W3212874555 @default.
- W4386840013 cites W4200361421 @default.
- W4386840013 cites W4211223138 @default.
- W4386840013 cites W4221095311 @default.
- W4386840013 cites W4296182596 @default.
- W4386840013 cites W4362691950 @default.
- W4386840013 doi "https://doi.org/10.1002/mp.16748" @default.
- W4386840013 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37722701" @default.
- W4386840013 hasPublicationYear "2023" @default.
- W4386840013 type Work @default.
- W4386840013 citedByCount "0" @default.
- W4386840013 crossrefType "journal-article" @default.
- W4386840013 hasAuthorship W4386840013A5002073103 @default.
- W4386840013 hasAuthorship W4386840013A5013137539 @default.
- W4386840013 hasAuthorship W4386840013A5049709847 @default.
- W4386840013 hasAuthorship W4386840013A5072298276 @default.
- W4386840013 hasAuthorship W4386840013A5089000661 @default.
- W4386840013 hasConcept C104317684 @default.
- W4386840013 hasConcept C141231307 @default.
- W4386840013 hasConcept C189206191 @default.
- W4386840013 hasConcept C54355233 @default.
- W4386840013 hasConcept C60644358 @default.
- W4386840013 hasConcept C70721500 @default.
- W4386840013 hasConcept C86803240 @default.
- W4386840013 hasConceptScore W4386840013C104317684 @default.
- W4386840013 hasConceptScore W4386840013C141231307 @default.
- W4386840013 hasConceptScore W4386840013C189206191 @default.
- W4386840013 hasConceptScore W4386840013C54355233 @default.
- W4386840013 hasConceptScore W4386840013C60644358 @default.
- W4386840013 hasConceptScore W4386840013C70721500 @default.
- W4386840013 hasConceptScore W4386840013C86803240 @default.
- W4386840013 hasFunder F4320321001 @default.
- W4386840013 hasLocation W43868400131 @default.
- W4386840013 hasLocation W43868400132 @default.
- W4386840013 hasOpenAccess W4386840013 @default.
- W4386840013 hasPrimaryLocation W43868400131 @default.
- W4386840013 hasRelatedWork W14258228 @default.
- W4386840013 hasRelatedWork W1635871203 @default.
- W4386840013 hasRelatedWork W2053972265 @default.
- W4386840013 hasRelatedWork W2158455641 @default.
- W4386840013 hasRelatedWork W2168223719 @default.
- W4386840013 hasRelatedWork W2790025494 @default.
- W4386840013 hasRelatedWork W2973708818 @default.
- W4386840013 hasRelatedWork W2998655779 @default.
- W4386840013 hasRelatedWork W3120427588 @default.
- W4386840013 hasRelatedWork W340659040 @default.
- W4386840013 isParatext "false" @default.
- W4386840013 isRetracted "false" @default.
- W4386840013 workType "article" @default.