Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386845849> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4386845849 abstract "Variable selection and graphical modeling play essential roles in highly correlated and high-dimensional (HCHD) data analysis. Variable selection methods have been developed under both parametric and nonparametric model settings. However, variable selection for nonadditive, nonparametric regression with high-dimensional variables is challenging due to complications in modeling unknown dependence structures among HCHD variables. Gaussian graphical models are a popular and useful tool for investigating the conditional dependence between variables via estimating sparse precision matrices. For a given class of interest, the estimated precision matrices can be mapped onto networks for visualization. However, the limitation of Gaussian graphical models is that they are only applicable to discretized response variables and for the case when plog(p)≪n$$ plog (p)ll n $$ , where p$$ p $$ is the number of variables and n$$ n $$ is the sample size. They are necessary to develop a joint method for variable selection and graphical modeling. To the best of our knowledge, the methods for simultaneously selecting variable selection and estimating networks among variables in the semiparametric regression settings are quite limited. Hence, in this paper, we develop a joint semiparametric kernel network regression method to solve this limitation and to provide a connection between them. Our approach is a unified and integrated method that can simultaneously identify important variables and build a network among those variables. We developed our approach under a semiparametric kernel machine regression framework, which can allow for nonlinear or nonadditive associations and complicated interactions among the variables. The advantages of our approach are that it can (1) simultaneously select variables and build a network among HCHD variables under a regression setting; (2) model unknown and complicated interactions among the variables and estimate the network among these variables; (3) allow for any form of semiparametric model, including non-additive, nonparametric model; and (4) provide an interpretable network that considers important variables and a response variable. We demonstrate our approach using a simulation study and real application on genetic pathway-based analysis." @default.
- W4386845849 created "2023-09-20" @default.
- W4386845849 creator A5016586954 @default.
- W4386845849 creator A5030769389 @default.
- W4386845849 date "2023-09-19" @default.
- W4386845849 modified "2023-09-27" @default.
- W4386845849 title "Joint semiparametric kernel network regression" @default.
- W4386845849 cites W1934704664 @default.
- W4386845849 cites W1989727964 @default.
- W4386845849 cites W2076349866 @default.
- W4386845849 cites W2080726496 @default.
- W4386845849 cites W2081746825 @default.
- W4386845849 cites W2097581234 @default.
- W4386845849 cites W2123106337 @default.
- W4386845849 cites W2132555912 @default.
- W4386845849 cites W2163707651 @default.
- W4386845849 cites W2165009258 @default.
- W4386845849 cites W2593996946 @default.
- W4386845849 doi "https://doi.org/10.1002/sim.9910" @default.
- W4386845849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37724619" @default.
- W4386845849 hasPublicationYear "2023" @default.
- W4386845849 type Work @default.
- W4386845849 citedByCount "0" @default.
- W4386845849 crossrefType "journal-article" @default.
- W4386845849 hasAuthorship W4386845849A5016586954 @default.
- W4386845849 hasAuthorship W4386845849A5030769389 @default.
- W4386845849 hasBestOaLocation W43868458491 @default.
- W4386845849 hasConcept C102366305 @default.
- W4386845849 hasConcept C105795698 @default.
- W4386845849 hasConcept C114614502 @default.
- W4386845849 hasConcept C117251300 @default.
- W4386845849 hasConcept C119857082 @default.
- W4386845849 hasConcept C134306372 @default.
- W4386845849 hasConcept C148483581 @default.
- W4386845849 hasConcept C152877465 @default.
- W4386845849 hasConcept C155846161 @default.
- W4386845849 hasConcept C182365436 @default.
- W4386845849 hasConcept C19539793 @default.
- W4386845849 hasConcept C200695384 @default.
- W4386845849 hasConcept C33923547 @default.
- W4386845849 hasConcept C41008148 @default.
- W4386845849 hasConcept C74127309 @default.
- W4386845849 hasConcept C74193536 @default.
- W4386845849 hasConcept C78297888 @default.
- W4386845849 hasConceptScore W4386845849C102366305 @default.
- W4386845849 hasConceptScore W4386845849C105795698 @default.
- W4386845849 hasConceptScore W4386845849C114614502 @default.
- W4386845849 hasConceptScore W4386845849C117251300 @default.
- W4386845849 hasConceptScore W4386845849C119857082 @default.
- W4386845849 hasConceptScore W4386845849C134306372 @default.
- W4386845849 hasConceptScore W4386845849C148483581 @default.
- W4386845849 hasConceptScore W4386845849C152877465 @default.
- W4386845849 hasConceptScore W4386845849C155846161 @default.
- W4386845849 hasConceptScore W4386845849C182365436 @default.
- W4386845849 hasConceptScore W4386845849C19539793 @default.
- W4386845849 hasConceptScore W4386845849C200695384 @default.
- W4386845849 hasConceptScore W4386845849C33923547 @default.
- W4386845849 hasConceptScore W4386845849C41008148 @default.
- W4386845849 hasConceptScore W4386845849C74127309 @default.
- W4386845849 hasConceptScore W4386845849C74193536 @default.
- W4386845849 hasConceptScore W4386845849C78297888 @default.
- W4386845849 hasFunder F4320335353 @default.
- W4386845849 hasLocation W43868458491 @default.
- W4386845849 hasLocation W43868458492 @default.
- W4386845849 hasOpenAccess W4386845849 @default.
- W4386845849 hasPrimaryLocation W43868458491 @default.
- W4386845849 hasRelatedWork W2000388799 @default.
- W4386845849 hasRelatedWork W2149420770 @default.
- W4386845849 hasRelatedWork W2155796958 @default.
- W4386845849 hasRelatedWork W2159436900 @default.
- W4386845849 hasRelatedWork W2440383261 @default.
- W4386845849 hasRelatedWork W4205780558 @default.
- W4386845849 hasRelatedWork W4235117288 @default.
- W4386845849 hasRelatedWork W4236180998 @default.
- W4386845849 hasRelatedWork W4313913483 @default.
- W4386845849 hasRelatedWork W4385521040 @default.
- W4386845849 isParatext "false" @default.
- W4386845849 isRetracted "false" @default.
- W4386845849 workType "article" @default.