Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386847232> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4386847232 endingPage "599" @default.
- W4386847232 startingPage "587" @default.
- W4386847232 abstract "Age-related macular degeneration (ARMD) is an eye disease that can result in blurred or no vision in the central vision. It happens when aging causes damage to the macula and is the main reason for loss of sight for older adults. Deep learning techniques are widely used in ophthalmology, such as diagnosing age-related macular degeneration (ARMD), which requires a huge image dataset. But the existing datasets are unclear and insufficient for building the training models and require more preprocessing time. Also, Indian datasets are not used prominently for the leading causes of blindness and eye diseases. Therefore, this paper emphasizes on synthesizing large new datasets of artificial retinal images from the existing datasets by a deep learning approach generative adversarial networks which are the GANs. Generative adversarial networks (GANs) will be trained with fundus images from the age-related eye disease study (AREDS), producing synthetic fundus images with the ARMD. The performance of ARMD diagnostic DCNNs will be trained on the combination of both real and synthetic datasets. Images obtained by using generative adversarial networks (GANs) appear to be realistic and also increase the precision of the model. The deep learning model’s performance which uses the synthesized dataset should be close to the real images, suggesting that the dataset can be utilized for training humans and machines." @default.
- W4386847232 created "2023-09-20" @default.
- W4386847232 creator A5018779214 @default.
- W4386847232 creator A5092899279 @default.
- W4386847232 creator A5092899280 @default.
- W4386847232 creator A5092899281 @default.
- W4386847232 date "2023-01-01" @default.
- W4386847232 modified "2023-09-27" @default.
- W4386847232 title "Synthesizing Realistic ARMD Fundus Images Using Generative Adversarial Networks (GANs)" @default.
- W4386847232 cites W2100756624 @default.
- W4386847232 cites W2904843110 @default.
- W4386847232 cites W2962770929 @default.
- W4386847232 cites W3184652971 @default.
- W4386847232 cites W4206126476 @default.
- W4386847232 cites W4285154153 @default.
- W4386847232 doi "https://doi.org/10.1007/978-981-99-1588-0_51" @default.
- W4386847232 hasPublicationYear "2023" @default.
- W4386847232 type Work @default.
- W4386847232 citedByCount "0" @default.
- W4386847232 crossrefType "book-chapter" @default.
- W4386847232 hasAuthorship W4386847232A5018779214 @default.
- W4386847232 hasAuthorship W4386847232A5092899279 @default.
- W4386847232 hasAuthorship W4386847232A5092899280 @default.
- W4386847232 hasAuthorship W4386847232A5092899281 @default.
- W4386847232 hasConcept C108583219 @default.
- W4386847232 hasConcept C118487528 @default.
- W4386847232 hasConcept C153180895 @default.
- W4386847232 hasConcept C154945302 @default.
- W4386847232 hasConcept C2776391266 @default.
- W4386847232 hasConcept C2776403814 @default.
- W4386847232 hasConcept C2779093074 @default.
- W4386847232 hasConcept C2988773926 @default.
- W4386847232 hasConcept C31972630 @default.
- W4386847232 hasConcept C34736171 @default.
- W4386847232 hasConcept C39890363 @default.
- W4386847232 hasConcept C41008148 @default.
- W4386847232 hasConcept C71924100 @default.
- W4386847232 hasConceptScore W4386847232C108583219 @default.
- W4386847232 hasConceptScore W4386847232C118487528 @default.
- W4386847232 hasConceptScore W4386847232C153180895 @default.
- W4386847232 hasConceptScore W4386847232C154945302 @default.
- W4386847232 hasConceptScore W4386847232C2776391266 @default.
- W4386847232 hasConceptScore W4386847232C2776403814 @default.
- W4386847232 hasConceptScore W4386847232C2779093074 @default.
- W4386847232 hasConceptScore W4386847232C2988773926 @default.
- W4386847232 hasConceptScore W4386847232C31972630 @default.
- W4386847232 hasConceptScore W4386847232C34736171 @default.
- W4386847232 hasConceptScore W4386847232C39890363 @default.
- W4386847232 hasConceptScore W4386847232C41008148 @default.
- W4386847232 hasConceptScore W4386847232C71924100 @default.
- W4386847232 hasLocation W43868472321 @default.
- W4386847232 hasOpenAccess W4386847232 @default.
- W4386847232 hasPrimaryLocation W43868472321 @default.
- W4386847232 hasRelatedWork W180947891 @default.
- W4386847232 hasRelatedWork W1811444294 @default.
- W4386847232 hasRelatedWork W2054429460 @default.
- W4386847232 hasRelatedWork W2330592348 @default.
- W4386847232 hasRelatedWork W2366274480 @default.
- W4386847232 hasRelatedWork W2580227355 @default.
- W4386847232 hasRelatedWork W2759580253 @default.
- W4386847232 hasRelatedWork W2811451159 @default.
- W4386847232 hasRelatedWork W3091560139 @default.
- W4386847232 hasRelatedWork W4206598487 @default.
- W4386847232 isParatext "false" @default.
- W4386847232 isRetracted "false" @default.
- W4386847232 workType "book-chapter" @default.